cvw/pipelined/src/ifu/ifu.sv

381 lines
22 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// ifu.sv
2021-01-15 04:37:51 +00:00
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
2021-01-15 04:37:51 +00:00
//
// Purpose: Instrunction Fetch Unit
// PC, branch prediction, instruction cache
2021-01-15 04:37:51 +00:00
//
2023-01-11 23:15:08 +00:00
// A component of the CORE-V-WALLY configurable RISC-V project.
2021-01-15 04:37:51 +00:00
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
2021-01-15 04:37:51 +00:00
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
2021-01-15 04:37:51 +00:00
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
2021-01-15 04:37:51 +00:00
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
2021-01-15 04:37:51 +00:00
`include "wally-config.vh"
2021-01-15 04:37:51 +00:00
module ifu (
input logic clk, reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushD, FlushE, FlushM, FlushW,
output logic IFUStallF, // IFU stalsl pipeline during a multicycle operation
2023-01-20 17:51:10 +00:00
// Command from CPU
input logic InvalidateICacheM, // Clears all instruction cache valid bits
input logic CSRWriteFenceM, // CSR write or fence instruction, PCNextF = the next valid PC (typically PCE)
// Bus interface
output logic [`PA_BITS-1:0] IFUHADDR, // Bus address from IFU to EBU
input logic [`XLEN-1:0] HRDATA, // Bus read data from IFU to EBU
input logic IFUHREADY, // Bus ready from IFU to EBU
output logic IFUHWRITE, // Bus write operation from IFU to EBU
output logic [2:0] IFUHSIZE, // Bus operation size from IFU to EBU
output logic [2:0] IFUHBURST, // Bus burst from IFU to EBU
output logic [1:0] IFUHTRANS, // Bus transaction type from IFU to EBU
2023-01-20 17:51:10 +00:00
output logic [`XLEN-1:0] PCF, // Fetch stage instruction address
// Execute
2023-01-20 17:51:10 +00:00
output logic [`XLEN-1:0] PCLinkE, // The address following the branch instruction. (AKA Fall through address)
input logic PCSrcE, // Executation stage branch is taken
input logic [`XLEN-1:0] IEUAdrE, // The branch/jump target address
2023-01-20 17:51:10 +00:00
output logic [`XLEN-1:0] PCE, // Execution stage instruction address
output logic BPPredWrongE, // Prediction is wrong
// Mem
2023-01-20 17:51:10 +00:00
output logic CommittedF, // I$ or bus memory operation started, delay interrupts
input logic [`XLEN-1:0] UnalignedPCNextF, // The next PCF, but not aligned to 2 bytes.
2023-01-20 17:51:10 +00:00
output logic [`XLEN-1:0] PCNext2F, // Selected PC between branch prediction and next valid PC if CSRWriteFence
output logic [31:0] InstrD, // The decoded instruction in Decode stage
output logic [31:0] InstrM, // The decoded instruction in Memory stage
output logic [`XLEN-1:0] PCM, // Memory stage instruction address
// branch predictor
output logic [3:0] InstrClassM, // The valid instruction class. 1-hot encoded as jalr, ret, jr (not ret), j, br
output logic DirPredictionWrongM, // Prediction direction is wrong
output logic BTBPredPCWrongM, // Prediction target wrong
output logic RASPredPCWrongM, // RAS prediction is wrong
output logic PredictionInstrClassWrongM, // Class prediction is wrong
// Faults
input logic IllegalBaseInstrFaultD, // Illegal non-compressed instruction
output logic InstrPageFaultF, // Instruction page fault
output logic IllegalIEUInstrFaultD, // Illegal instruction including compressed
output logic InstrMisalignedFaultM, // Branch target not aligned to 4 bytes if no compressed allowed (2 bytes if allowed)
// mmu management
input logic [1:0] PrivilegeModeW, // Priviledge mode in Writeback stage
input logic [`XLEN-1:0] PTE, // Hardware page table walker (HPTW) writes Page table entry (PTE) to ITLB
input logic [1:0] PageType, // Hardware page table walker (HPTW) writes PageType to ITLB
input logic ITLBWriteF, // Writes PTE and PageType to ITLB
input logic [`XLEN-1:0] SATP_REGW, // Location of the root page table and page table configuration
input logic STATUS_MXR, // Status CSR: make executable page readable
input logic STATUS_SUM, // Status CSR: Supervisor access to user memory
input logic STATUS_MPRV, // Status CSR: modify machine privilege
input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level
input logic sfencevmaM, // Virtual memory address fence, invalidate TLB entries
output logic ITLBMissF, // ITLB miss causes HPTW (hardware pagetable walker) walk
output logic InstrDAPageFaultF, // ITLB hit needs to update dirty or access bits
2023-01-20 18:09:21 +00:00
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0], // PMP configuration from privileged unit
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0], // PMP address from privileged unit
output logic InstrAccessFaultF, // Instruction access fault
output logic ICacheAccess, // Report I$ read to performance counters
output logic ICacheMiss // Report I$ miss to performance counters
);
2021-10-23 19:00:32 +00:00
2023-01-20 18:09:21 +00:00
localparam [31:0] nop = 32'h00000013; // instruction for NOP
logic [`XLEN-1:0] PCNextF; // Next PCF, selected from Branch predictor, Privilege, or PC+2/4
2023-01-20 18:09:21 +00:00
logic BranchMisalignedFaultE; // Branch target not aligned to 4 bytes if no compressed allowed (2 bytes if allowed)
logic [`XLEN-1:0] PCPlus2or4F; // PCF + 2 (CompressedF) or PCF + 4 (Non-compressed)
2023-01-20 18:29:25 +00:00
logic [`XLEN-1:0] PCNextFSpill; // Next PCF after possible + 2 to handle spill
logic [`XLEN-1:0] PCFSpill; // PCF with possible + 2 to handle spill
2023-01-20 18:09:21 +00:00
logic [`XLEN-1:0] PCLinkD; // PCF2or4F delayed 1 cycle. This is next PC after a control flow instruction (br or j)
logic [`XLEN-1:2] PCPlus4F; // PCPlus4F is always PCF + 4. Fancy way to compute PCPlus2or4F
logic [`XLEN-1:0] PCD; // Decode stage instruction address
logic [`XLEN-1:0] NextValidPCE; // The PC of the next valid instruction in the pipeline after csr write or fence
logic [`PA_BITS-1:0] PCPF; // Physical address after address translation
2023-01-20 18:09:21 +00:00
logic [`XLEN+1:0] PCFExt; //
2023-01-20 18:09:21 +00:00
logic [31:0] IROMInstrF; // Instruction from the IROM
logic [31:0] ICacheInstrF; // Instruction from the I$
logic [31:0] InstrRawF; // Instruction from the IROM, I$, or bus
logic CompressedF; // The fetched instruction is compressed
logic [31:0] PostSpillInstrRawF; // Fetch instruction after merge two halves of spill
2023-01-20 18:09:21 +00:00
logic [31:0] InstrRawD; // Non-decompressed instruction in the Decode stage
2023-01-20 18:09:21 +00:00
logic [1:0] IFURWF; // IFU alreays read IFURWF = 10
logic [31:0] InstrE; // Instruction in the Execution stage
logic [31:0] NextInstrD, NextInstrE; // Instruction into the next stage after possible stage flush
2023-01-26 00:51:09 +00:00
logic CacheableF; // PMA indicates instruction address is cacheable
2023-01-20 18:29:25 +00:00
logic SelNextSpillF; // In a spill, stall pipeline and gate local stallF
logic BusStall; // Bus interface busy with multicycle operation
logic ICacheStallF; // I$ busy with multicycle operation
logic IFUCacheBusStallD; // EIther I$ or bus busy with multicycle operation
logic GatedStallD; // StallD gated by selected next spill
2022-02-08 20:54:53 +00:00
// branch predictor signal
2023-01-20 18:29:25 +00:00
logic [`XLEN-1:0] PCNext1F; // Branch predictor next PCF
logic BusCommittedF; // Bus memory operation in flight, delay interrupts
logic CacheCommittedF; // I$ memory operation started, delay interrupts
logic SelIROM; // PMA indicates instruction address is in the IROM
2022-01-31 19:16:23 +00:00
assign PCFExt = {2'b00, PCFSpill};
/////////////////////////////////////////////////////////////////////////////////////////////
// Spill Support
2022-01-31 19:16:23 +00:00
/////////////////////////////////////////////////////////////////////////////////////////////
2022-01-27 17:18:55 +00:00
2023-01-19 20:08:42 +00:00
if(`C_SUPPORTED) begin : Spill
spill #(`ICACHE) spill(.clk, .reset, .StallD, .FlushD, .PCF, .PCPlus4F, .PCNextF, .InstrRawF,
2023-01-19 01:25:54 +00:00
.InstrDAPageFaultF, .IFUCacheBusStallD, .ITLBMissF, .PCNextFSpill, .PCFSpill, .SelNextSpillF, .PostSpillInstrRawF, .CompressedF);
2023-01-19 20:08:42 +00:00
end else begin : NoSpill
assign PCNextFSpill = PCNextF;
assign PCFSpill = PCF;
2022-10-05 20:36:56 +00:00
assign PostSpillInstrRawF = InstrRawF;
2022-01-28 19:40:02 +00:00
assign {SelNextSpillF, CompressedF} = 0;
end
////////////////////////////////////////////////////////////////////////////////////////////////
// Memory management
////////////////////////////////////////////////////////////////////////////////////////////////
2021-06-04 15:59:14 +00:00
if(`ZICSR_SUPPORTED == 1) begin : immu
///////////////////////////////////////////
// sfence.vma causes TLB flushes
///////////////////////////////////////////
// sets ITLBFlush to pulse for one cycle of the sfence.vma instruction
// In this instr we want to flush the tlb and then do a pagetable walk to update the itlb and continue the program.
// But we're still in the stalled sfence instruction, so if itlbflushf == sfencevmaM, tlbflush would never drop and
// the tlbwrite would never take place after the pagetable walk. by adding in ~StallMQ, we are able to drop itlbflush
// after a cycle AND pulse it for another cycle on any further back-to-back sfences.
logic StallMQ, TLBFlush;
flopr #(1) StallMReg(.clk, .reset, .d(StallM), .q(StallMQ));
assign TLBFlush = sfencevmaM & ~StallMQ;
mmu #(.TLB_ENTRIES(`ITLB_ENTRIES), .IMMU(1))
immu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(1'b0),
.VAdr(PCFExt),
.Size(2'b10),
.PTE(PTE),
.PageTypeWriteVal(PageType),
.TLBWrite(ITLBWriteF),
.TLBFlush,
.PhysicalAddress(PCPF),
.TLBMiss(ITLBMissF),
.Cacheable(CacheableF), .Idempotent(), .SelTIM(SelIROM),
.InstrAccessFaultF, .LoadAccessFaultM(), .StoreAmoAccessFaultM(),
.InstrPageFaultF, .LoadPageFaultM(), .StoreAmoPageFaultM(),
.LoadMisalignedFaultM(), .StoreAmoMisalignedFaultM(),
.DAPageFault(InstrDAPageFaultF),
.AtomicAccessM(1'b0),.ExecuteAccessF(1'b1), .WriteAccessM(1'b0), .ReadAccessM(1'b0),
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW);
end else begin
assign {ITLBMissF, InstrAccessFaultF, InstrPageFaultF, InstrDAPageFaultF} = '0;
assign PCPF = PCFExt[`PA_BITS-1:0];
assign CacheableF = '1;
2022-10-05 20:36:56 +00:00
assign SelIROM = '0;
end
2022-01-27 17:18:55 +00:00
2022-01-28 21:26:06 +00:00
////////////////////////////////////////////////////////////////////////////////////////////////
// Memory
////////////////////////////////////////////////////////////////////////////////////////////////
// CommittedM tells the CPU's privileged unit the current instruction
// in the memory stage is a memory operaton and that memory operation is either completed
// or is partially executed. Partially completed memory operations need to prevent an interrupts.
// There is not a clean way to restore back to a partial executed instruction. CommiteedM will
// delay the interrupt until the LSU is in a clean state.
assign CommittedF = CacheCommittedF | BusCommittedF;
2022-01-27 17:18:55 +00:00
2022-10-05 20:36:56 +00:00
logic IgnoreRequest;
assign IgnoreRequest = ITLBMissF | FlushD;
// The IROM uses untranslated addresses, so it is not compatible with virtual memory.
2023-01-19 00:44:30 +00:00
if (`IROM_SUPPORTED) begin : irom
logic IROMce;
assign IROMce = ~GatedStallD | reset;
assign IFURWF = 2'b10;
2023-01-19 00:44:30 +00:00
irom irom(.clk, .ce(IROMce), .Adr(PCNextFSpill[`XLEN-1:0]), .IROMInstrF);
end else begin
assign IFURWF = 2'b10;
end
if (`BUS) begin : bus
// **** must fix words per line vs beats per line as in lsu.
localparam integer WORDSPERLINE = `ICACHE ? `ICACHE_LINELENINBITS/`XLEN : 1;
localparam integer LOGBWPL = `ICACHE ? $clog2(WORDSPERLINE) : 1;
if(`ICACHE) begin : icache
2022-08-26 03:02:38 +00:00
localparam integer LINELEN = `ICACHE ? `ICACHE_LINELENINBITS : `XLEN;
2023-01-20 18:29:25 +00:00
localparam integer LLENPOVERAHBW = `LLEN / `AHBW; // Number of AHB beats in a LLEN word. AHBW cannot be larger than LLEN. (implementation limitation)
2022-08-26 03:02:38 +00:00
logic [LINELEN-1:0] FetchBuffer;
logic [`PA_BITS-1:0] ICacheBusAdr;
logic ICacheBusAck;
logic [1:0] CacheBusRW, BusRW, CacheRWF;
2022-08-31 16:21:02 +00:00
assign BusRW = ~ITLBMissF & ~CacheableF & ~SelIROM ? IFURWF : '0;
assign CacheRWF = ~ITLBMissF & CacheableF & ~SelIROM ? IFURWF : '0;
cache #(.LINELEN(`ICACHE_LINELENINBITS),
.NUMLINES(`ICACHE_WAYSIZEINBYTES*8/`ICACHE_LINELENINBITS),
.NUMWAYS(`ICACHE_NUMWAYS), .LOGBWPL(LOGBWPL), .WORDLEN(32), .MUXINTERVAL(16), .DCACHE(0))
icache(.clk, .reset, .FlushStage(FlushD), .Stall(GatedStallD),
2022-08-25 17:44:39 +00:00
.FetchBuffer, .CacheBusAck(ICacheBusAck),
.CacheBusAdr(ICacheBusAdr), .CacheStall(ICacheStallF),
.CacheBusRW,
2022-10-05 20:36:56 +00:00
.ReadDataWord(ICacheInstrF),
.SelHPTW('0),
.CacheMiss(ICacheMiss), .CacheAccess(ICacheAccess),
.ByteMask('0), .BeatCount('0), .SelBusBeat('0),
2022-11-14 03:36:12 +00:00
.CacheWriteData('0),
.CacheRW(CacheRWF),
.CacheAtomic('0), .FlushCache('0),
.NextAdr(PCNextFSpill[11:0]),
.PAdr(PCPF),
.CacheCommitted(CacheCommittedF), .InvalidateCache(InvalidateICacheM));
2023-01-18 22:58:03 +00:00
ahbcacheinterface #(WORDSPERLINE, LOGBWPL, LINELEN, LLENPOVERAHBW)
ahbcacheinterface(.HCLK(clk), .HRESETn(~reset),
2022-08-30 19:17:00 +00:00
.HRDATA,
.Flush(FlushD), .CacheBusRW, .HSIZE(IFUHSIZE), .HBURST(IFUHBURST), .HTRANS(IFUHTRANS), .HWSTRB(),
2022-08-30 19:17:00 +00:00
.Funct3(3'b010), .HADDR(IFUHADDR), .HREADY(IFUHREADY), .HWRITE(IFUHWRITE), .CacheBusAdr(ICacheBusAdr),
.BeatCount(), .Cacheable(CacheableF), .SelBusBeat(), .WriteDataM('0),
.CacheBusAck(ICacheBusAck), .HWDATA(), .CacheableOrFlushCacheM(1'b0), .CacheReadDataWordM('0),
2022-08-26 03:02:38 +00:00
.FetchBuffer, .PAdr(PCPF),
2022-12-21 22:12:55 +00:00
.BusRW, .Stall(GatedStallD),
.BusStall, .BusCommitted(BusCommittedF));
2022-08-26 03:02:38 +00:00
2022-10-05 20:36:56 +00:00
mux3 #(32) UnCachedDataMux(.d0(ICacheInstrF), .d1(FetchBuffer[32-1:0]), .d2(IROMInstrF),
2022-10-17 17:34:14 +00:00
.s({SelIROM, ~CacheableF}), .y(InstrRawF[31:0]));
end else begin : passthrough
2022-08-26 03:02:38 +00:00
assign IFUHADDR = PCPF;
logic [31:0] FetchBuffer;
logic [1:0] BusRW;
assign BusRW = ~ITLBMissF & ~SelIROM ? IFURWF : '0;
assign IFUHSIZE = 3'b010;
2022-08-26 03:02:38 +00:00
ahbinterface #(0) ahbinterface(.HCLK(clk), .Flush(FlushD), .HRESETn(~reset), .HREADY(IFUHREADY),
2022-08-31 19:52:06 +00:00
.HRDATA(HRDATA), .HTRANS(IFUHTRANS), .HWRITE(IFUHWRITE), .HWDATA(),
.HWSTRB(), .BusRW, .ByteMask(), .WriteData('0),
2022-12-21 22:12:55 +00:00
.Stall(GatedStallD), .BusStall, .BusCommitted(BusCommittedF), .FetchBuffer(FetchBuffer));
assign CacheCommittedF = '0;
2022-10-05 20:36:56 +00:00
if(`IROM_SUPPORTED) mux2 #(32) UnCachedDataMux2(FetchBuffer, IROMInstrF, SelIROM, InstrRawF);
else assign InstrRawF = FetchBuffer;
2022-08-26 03:02:38 +00:00
assign IFUHBURST = 3'b0;
2023-01-20 18:29:25 +00:00
assign {ICacheMiss, ICacheAccess, ICacheStallF} = '0;
end
end else begin : nobus // block: bus
assign {BusStall, CacheCommittedF} = '0;
2022-08-26 03:02:38 +00:00
assign {ICacheStallF, ICacheMiss, ICacheAccess} = '0;
2022-10-05 20:36:56 +00:00
assign InstrRawF = IROMInstrF;
end
2022-12-23 03:56:33 +00:00
assign IFUCacheBusStallD = ICacheStallF | BusStall;
assign IFUStallF = IFUCacheBusStallD | SelNextSpillF;
2022-12-21 22:12:55 +00:00
assign GatedStallD = StallD & ~SelNextSpillF;
2022-12-19 23:18:42 +00:00
flopenl #(32) AlignedInstrRawDFlop(clk, reset | FlushD, ~StallD, PostSpillInstrRawF, nop, InstrRawD);
////////////////////////////////////////////////////////////////////////////////////////////////
// PCNextF logic
////////////////////////////////////////////////////////////////////////////////////////////////
if(`ZICSR_SUPPORTED | `ZIFENCEI_SUPPORTED)
2022-12-20 05:16:58 +00:00
mux2 #(`XLEN) pcmux2(.d0(PCNext1F), .d1(NextValidPCE), .s(CSRWriteFenceM),.y(PCNext2F));
else assign PCNext2F = PCNext1F;
assign PCNextF = {UnalignedPCNextF[`XLEN-1:1], 1'b0}; // hart-SPEC p. 21 about 16-bit alignment
2022-01-14 17:19:12 +00:00
flopenl #(`XLEN) pcreg(clk, reset, ~StallF, PCNextF, `RESET_VECTOR, PCF);
2022-12-20 18:58:54 +00:00
// pcadder
// add 2 or 4 to the PC, based on whether the instruction is 16 bits or 32
2022-12-21 15:18:30 +00:00
assign PCPlus4F = PCF[`XLEN-1:2] + 1; // add 4 to PC
2022-12-20 18:58:54 +00:00
// choose PC+2 or PC+4 based on CompressedF, which arrives later.
// Speeds up critical path as compared to selecting adder input based on CompressedF
2022-12-21 15:18:30 +00:00
// *** consider gating PCPlus4F to provide the reset.
/* -----\/----- EXCLUDED -----\/-----
2022-12-20 22:33:49 +00:00
assign PCPlus2or4F[0] = '0;
2022-12-21 14:35:43 +00:00
assign PCPlus2or4F[1] = ~reset & (CompressedF ^ PCF[1]);
2022-12-21 15:18:30 +00:00
assign PCPlus2or4F[`XLEN-1:2] = reset ? '0 : CompressedF & ~PCF[1] ? PCF[`XLEN-1:2] : PCPlus4F;
-----/\----- EXCLUDED -----/\----- */
2022-12-21 14:35:43 +00:00
/* -----\/----- EXCLUDED -----\/-----
assign PCPlus2or4F[1:0] = reset ? 2'b00 : CompressedF ? PCF[1] ? 2'b00 : 2'b10 : PCF[1:0];
-----/\----- EXCLUDED -----/\----- */
// *** There is actually a bug in the regression test. We fetched an address which returns data with
// an X. This version of the code does not die because if CompressedF is an X it just defaults to the last
// option. The above code would work, but propagates the x.
2022-12-20 18:58:54 +00:00
always_comb
if(reset) PCPlus2or4F = '0;
else if (CompressedF) // add 2
2022-12-21 15:18:30 +00:00
if (PCF[1]) PCPlus2or4F = {PCPlus4F, 2'b00};
2022-12-20 18:58:54 +00:00
else PCPlus2or4F = {PCF[`XLEN-1:2], 2'b10};
2022-12-21 15:18:30 +00:00
else PCPlus2or4F = {PCPlus4F, PCF[1:0]}; // add 4
2022-12-20 18:58:54 +00:00
////////////////////////////////////////////////////////////////////////////////////////////////
// Branch and Jump Predictor
////////////////////////////////////////////////////////////////////////////////////////////////
2022-01-14 17:19:12 +00:00
if (`BPRED_ENABLED) begin : bpred
2022-01-05 16:25:08 +00:00
bpred bpred(.clk, .reset,
.StallF, .StallD, .StallE, .StallM, .StallW,
.FlushD, .FlushE, .FlushM, .FlushW,
.InstrD, .PCNextF, .PCPlus2or4F, .PCNext1F, .PCE, .PCM, .PCSrcE, .IEUAdrE, .PCF, .NextValidPCE,
.PCD, .PCLinkE, .InstrClassM, .BPPredWrongE, .PostSpillInstrRawF,
2023-01-05 23:19:27 +00:00
.DirPredictionWrongM, .BTBPredPCWrongM, .RASPredPCWrongM, .PredictionInstrClassWrongM);
2022-02-08 20:17:44 +00:00
2022-01-05 16:25:08 +00:00
end else begin : bpred
2022-12-20 05:16:58 +00:00
mux2 #(`XLEN) pcmux1(.d0(PCPlus2or4F), .d1(IEUAdrE), .s(PCSrcE), .y(PCNext1F));
assign BPPredWrongE = PCSrcE;
2023-01-05 23:19:27 +00:00
assign {InstrClassM, DirPredictionWrongM, BTBPredPCWrongM, RASPredPCWrongM, PredictionInstrClassWrongM} = '0;
2022-12-20 05:16:58 +00:00
assign NextValidPCE = PCE;
2022-01-05 16:25:08 +00:00
end
2021-01-15 04:37:51 +00:00
////////////////////////////////////////////////////////////////////////////////////////////////
// Decode stage pipeline register and compressed instruction decoding.
////////////////////////////////////////////////////////////////////////////////////////////////
// Decode stage pipeline register and logic
flopenrc #(`XLEN) PCDReg(clk, reset, FlushD, ~StallD, PCF, PCD);
2021-01-28 05:22:05 +00:00
// expand 16-bit compressed instructions to 32 bits
if (`C_SUPPORTED) begin
logic IllegalCompInstrD;
decompress decomp(.InstrRawD, .InstrD, .IllegalCompInstrD);
assign IllegalIEUInstrFaultD = IllegalBaseInstrFaultD | IllegalCompInstrD; // illegal if bad 32 or 16-bit instr
end else begin
assign InstrD = InstrRawD;
assign IllegalIEUInstrFaultD = IllegalBaseInstrFaultD;
end
2021-01-15 04:37:51 +00:00
// Misaligned PC logic
2022-01-28 19:19:24 +00:00
// Instruction address misalignement only from br/jal(r) instructions.
// instruction address misalignment is generated by the target of control flow instructions, not
// the fetch itself.
2022-01-28 19:19:24 +00:00
// xret and Traps both cannot produce instruction misaligned.
// xret: mepc is an MXLEN-bit read/write register formatted as shown in Figure 3.21.
// The low bit of mepc (mepc[0]) is always zero. On implementations that support
// only IALIGN=32, the two low bits (mepc[1:0]) are always zero.
// Spec 3.1.14
// Traps: Cant happen. The bottom two bits of MTVEC are ignored so the trap always is to a multiple of 4. See 3.1.7 of the privileged spec.
assign BranchMisalignedFaultE = (IEUAdrE[1] & ~`C_SUPPORTED) & PCSrcE;
flopenr #(1) InstrMisalginedReg(clk, reset, ~StallM, BranchMisalignedFaultE, InstrMisalignedFaultM);
2022-01-27 17:18:55 +00:00
// Instruction and PC/PCLink pipeline registers
2023-01-20 18:09:21 +00:00
// Cannot use flopenrc for Instr(E/M) as it resets to NOP not 0.
2022-02-12 06:25:12 +00:00
mux2 #(32) FlushInstrEMux(InstrD, nop, FlushE, NextInstrD);
mux2 #(32) FlushInstrMMux(InstrE, nop, FlushM, NextInstrE);
flopenr #(32) InstrEReg(clk, reset, ~StallE, NextInstrD, InstrE);
flopenr #(32) InstrMReg(clk, reset, ~StallM, NextInstrE, InstrM);
2021-02-08 04:21:55 +00:00
flopenr #(`XLEN) PCEReg(clk, reset, ~StallE, PCD, PCE);
flopenr #(`XLEN) PCMReg(clk, reset, ~StallM, PCE, PCM);
flopenr #(`XLEN) PCPDReg(clk, reset, ~StallD, PCPlus2or4F, PCLinkD);
flopenr #(`XLEN) PCPEReg(clk, reset, ~StallE, PCLinkD, PCLinkE);
2021-01-15 04:37:51 +00:00
endmodule