cvw/pipelined/src/fpu/fdivsqrt/fdivsqrtpreproc.sv

160 lines
6.6 KiB
Systemverilog
Raw Normal View History

2022-07-07 23:01:33 +00:00
///////////////////////////////////////////
2022-08-29 11:04:05 +00:00
// fdivsqrtpreproc.sv
2022-07-07 23:01:33 +00:00
//
2022-09-19 21:26:32 +00:00
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
2022-07-07 23:01:33 +00:00
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
2022-08-29 11:04:05 +00:00
module fdivsqrtpreproc (
input logic clk,
2022-12-02 19:30:49 +00:00
input logic IFDivStartE,
input logic [`NF:0] Xm, Ym,
input logic [`NE-1:0] Xe, Ye,
input logic [`FMTBITS-1:0] Fmt,
input logic Sqrt,
2022-12-19 04:02:40 +00:00
input logic XZeroE,
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
2022-12-23 08:18:39 +00:00
input logic [2:0] Funct3E,
input logic MDUE, W64E,
output logic [`DIVBLEN:0] nE, nM, mM,
output logic NegQuotM, ALTBM, MDUM, W64M,
output logic AsM, AZeroM, BZeroM, AZeroE, BZeroE,
output logic [`NE+1:0] QeM,
2022-09-14 17:26:56 +00:00
output logic [`DIVb+3:0] X,
output logic [`DIVb-1:0] DPreproc,
2022-12-29 16:02:44 +00:00
output logic [`XLEN-1:0] AM
2022-07-07 23:01:33 +00:00
);
logic [`DIVb-1:0] XPreproc;
2022-12-30 14:55:20 +00:00
logic [`DIVb:0] PreSqrtX;
logic [`DIVb+3:0] DivX, SqrtX;
logic [`NE+1:0] QeE;
logic [`DIVb-1:0] IFNormLenX, IFNormLenD;
2022-12-30 14:55:20 +00:00
logic [`DIVBLEN:0] mE, ell;
2022-12-19 04:02:40 +00:00
logic [`DIVb+3:0] PreShiftX;
logic NumZeroE;
2022-07-07 23:01:33 +00:00
if (`IDIV_ON_FPU) begin
2022-12-29 16:02:44 +00:00
logic signedDiv;
logic AsE, BsE, ALTBE, NegQuotE;
logic [`XLEN-1:0] AE, BE;
logic [`XLEN-1:0] PosA, PosB;
2022-12-30 14:47:40 +00:00
logic [`DIVBLEN:0] ZeroDiff, IntBits;
logic [`LOGRK-1:0] RightShiftX;
2022-12-30 14:55:20 +00:00
logic [`DIVBLEN:0] pPlusr, pPrCeil, p;
logic [`LOGRK-1:0] pPrTrunc;
2022-12-29 16:02:44 +00:00
// Extract inputs, signs, zero, depending on W64 mode if applicable
assign signedDiv = ~Funct3E[0];
if (`XLEN==64) begin // 64-bit, supports W64
2022-12-29 16:02:44 +00:00
assign AsE = signedDiv & (W64E ? ForwardedSrcAE[31] : ForwardedSrcAE[`XLEN-1]);
assign BsE = signedDiv & (W64E ? ForwardedSrcBE[31] : ForwardedSrcBE[`XLEN-1]);
assign AE = W64E ? {{(`XLEN-32){AsE}}, ForwardedSrcAE[31:0]} : ForwardedSrcAE;
assign BE = W64E ? {{(`XLEN-32){BsE}}, ForwardedSrcBE[31:0]} : ForwardedSrcBE;
assign AZeroE = W64E ? ~(|ForwardedSrcAE[31:0]) : ~(|ForwardedSrcAE);
assign BZeroE = W64E ? ~(|ForwardedSrcBE[31:0]) : ~(|ForwardedSrcBE);
end else begin // 32 bits only
2022-12-29 16:02:44 +00:00
assign AsE = signedDiv & ForwardedSrcAE[`XLEN-1];
assign BsE = signedDiv & ForwardedSrcBE[`XLEN-1];
assign AE = ForwardedSrcAE;
assign BE = ForwardedSrcBE;
assign AZeroE = ~(|ForwardedSrcAE);
assign BZeroE = ~(|ForwardedSrcBE);
end
2022-12-29 16:02:44 +00:00
// Quotient is negative
assign NegQuotE = (AsE ^ BsE) & MDUE;
2022-12-29 16:02:44 +00:00
// Force inputs to be postiive
assign PosA = AsE ? -AE : AE;
assign PosB = BsE ? -BE : BE;
2022-12-29 16:02:44 +00:00
// Select integer or floating point inputs
assign IFNormLenX = MDUE ? {PosA, {(`DIVb-`XLEN){1'b0}}} : {Xm, {(`DIVb-`NF-1){1'b0}}};
assign IFNormLenD = MDUE ? {PosB, {(`DIVb-`XLEN){1'b0}}} : {Ym, {(`DIVb-`NF-1){1'b0}}};
// Difference in number of leading zeros
assign ZeroDiff = mE - ell;
assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B
assign p = ALTBE ? '0 : ZeroDiff;
/* verilator lint_off WIDTH */
2022-12-29 16:02:44 +00:00
// right shift amount to complete in discrete number of steps
2022-12-30 14:45:51 +00:00
assign pPlusr = `LOGR + p;
assign pPrTrunc = pPlusr % `RK;
2022-12-30 14:45:51 +00:00
assign pPrCeil = (pPlusr >> `LOGRK) + |pPrTrunc;
assign nE = (pPrCeil * `DIVCOPIES) - 1;
assign IntBits = `LOGR + p - 1;
assign RightShiftX = `RK - 1 - IntBits % `RK;
/* verilator lint_on WIDTH */
2022-12-29 16:02:44 +00:00
// Selet integer or floating-point operands
assign NumZeroE = MDUE ? AZeroE : XZeroE;
assign X = MDUE ? DivX >> RightShiftX : PreShiftX;
// pipeline registers
flopen #(1) mdureg(clk, IFDivStartE, MDUE, MDUM);
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM);
flopen #(1) azeroreg(clk, IFDivStartE, AZeroE, AZeroM);
flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM);
2022-12-29 16:02:44 +00:00
flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM);
end else begin
2022-12-29 16:02:44 +00:00
assign IFNormLenX = {Xm, {(`DIVb-`NF-1){1'b0}}};
assign IFNormLenD = {Ym, {(`DIVb-`NF-1){1'b0}}};
assign NumZeroE = XZeroE;
assign X = PreShiftX;
end
2022-12-29 16:02:44 +00:00
// count leading zeros for denorm FP and to normalize integer inputs
lzc #(`DIVb) lzcX (IFNormLenX, ell);
lzc #(`DIVb) lzcY (IFNormLenD, mE);
2022-07-07 23:01:33 +00:00
2022-12-29 16:02:44 +00:00
// Normalization shift
assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, 1'b1});
assign DPreproc = IFNormLenD << (mE + {{`DIVBLEN{1'b0}}, 1'b1});
2022-07-07 23:01:33 +00:00
2022-12-29 16:02:44 +00:00
// append leading 1 (for nonzero inputs) and zero-extend
2022-12-30 14:55:20 +00:00
assign PreSqrtX = (Xe[0]^ell[0]) ? {1'b0, ~NumZeroE, XPreproc[`DIVb-1:1]} : {~NumZeroE, XPreproc}; // Bottom bit of XPreproc is always zero because DIVb is larger than XLEN and NF
2022-12-19 04:02:40 +00:00
assign DivX = {3'b000, ~NumZeroE, XPreproc};
2022-12-30 14:55:20 +00:00
// Sqrt is initialized after a first step of R(X-1), which depends on Radix
if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
else assign SqrtX = {2'b11, PreSqrtX, 1'b0};
assign PreShiftX = Sqrt ? SqrtX : DivX;
2022-12-29 16:02:44 +00:00
// Floating-point exponent
fdivsqrtexpcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero(XZeroE), .ell, .m(mE), .Qe(QeE));
2022-12-30 14:55:20 +00:00
flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM);
endmodule