cvw/pipelined/src/fpu/fdivsqrt/fdivsqrtpreproc.sv

169 lines
6.5 KiB
Systemverilog
Raw Normal View History

2022-07-07 23:01:33 +00:00
///////////////////////////////////////////
2022-08-29 11:04:05 +00:00
// fdivsqrtpreproc.sv
2022-07-07 23:01:33 +00:00
//
2022-09-19 21:26:32 +00:00
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
2022-07-07 23:01:33 +00:00
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
2022-08-29 11:04:05 +00:00
module fdivsqrtpreproc (
input logic clk,
2022-12-02 19:30:49 +00:00
input logic IFDivStartE,
input logic [`NF:0] Xm, Ym,
input logic [`NE-1:0] Xe, Ye,
input logic [`FMTBITS-1:0] Fmt,
input logic Sqrt,
2022-10-25 17:48:43 +00:00
input logic XZero,
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic [2:0] Funct3E, Funct3M,
input logic MDUE, W64E,
output logic [`DIVBLEN:0] n, m,
2022-12-02 20:31:08 +00:00
output logic OTFCSwap, ALTBM, BZero, As,
output logic [`NE+1:0] QeM,
2022-09-14 17:26:56 +00:00
output logic [`DIVb+3:0] X,
output logic [`DIVb-1:0] DPreproc
2022-07-07 23:01:33 +00:00
);
logic [`DIVb-1:0] XPreproc;
logic [`DIVb:0] SqrtX;
2022-10-26 16:18:05 +00:00
logic [`DIVb+3:0] DivX;
logic [`NE+1:0] QeE;
2022-10-26 16:18:05 +00:00
// Intdiv signals
logic [`DIVb-1:0] IFNormLenX, IFNormLenD;
2022-10-26 16:18:05 +00:00
logic [`XLEN-1:0] PosA, PosB;
logic Bs, CalcOTFCSwap, ALTBE;
logic [`XLEN-1:0] A64, B64;
logic [`DIVBLEN:0] Calcn, Calcm;
logic [`DIVBLEN:0] ZeroDiff, IntBits, RightShiftX;
logic [`DIVBLEN:0] pPlusr, pPrCeil, p, ell;
2022-11-06 22:31:48 +00:00
logic [`LOGRK-1:0] pPrTrunc;
logic [`DIVb+3:0] PreShiftX;
2022-07-07 23:01:33 +00:00
// ***can probably merge X LZC with conversion
// cout the number of leading zeros
2022-11-09 18:41:26 +00:00
assign As = ForwardedSrcAE[`XLEN-1] & ~Funct3E[0];
assign Bs = ForwardedSrcBE[`XLEN-1] & ~Funct3E[0];
assign A64 = W64E ? {{(`XLEN-32){As}}, ForwardedSrcAE[31:0]} : ForwardedSrcAE;
assign B64 = W64E ? {{(`XLEN-32){Bs}}, ForwardedSrcBE[31:0]} : ForwardedSrcBE;
assign CalcOTFCSwap = (As ^ Bs) & MDUE;
assign PosA = As ? -A64 : A64;
assign PosB = Bs ? -B64 : B64;
assign BZero = |ForwardedSrcBE;
assign IFNormLenX = MDUE ? {PosA, {(`DIVb-`XLEN){1'b0}}} : {Xm, {(`DIVb-`NF-1){1'b0}}};
assign IFNormLenD = MDUE ? {PosB, {(`DIVb-`XLEN){1'b0}}} : {Ym, {(`DIVb-`NF-1){1'b0}}};
lzc #(`DIVb) lzcX (IFNormLenX, ell);
lzc #(`DIVb) lzcY (IFNormLenD, Calcm);
2022-07-07 23:01:33 +00:00
assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, ~MDUE}); // had issue with (`DIVBLEN+1)'(~MDUE) so using this instead
assign DPreproc = IFNormLenD << (Calcm + {{`DIVBLEN{1'b0}}, ~MDUE});
2022-07-07 23:01:33 +00:00
assign ZeroDiff = Calcm - ell;
2022-12-02 20:31:08 +00:00
assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B
assign p = ALTBE ? '0 : ZeroDiff;
2022-11-06 22:31:48 +00:00
assign pPlusr = (`DIVBLEN)'(`LOGR) + p;
assign pPrTrunc = pPlusr[`LOGRK-1:0];
assign pPrCeil = (pPlusr >> `LOGRK) + {{`DIVBLEN{1'b0}}, |(pPrTrunc)};
assign Calcn = (pPrCeil << `LOGK) - 1;
2022-11-06 22:31:48 +00:00
assign IntBits = (`DIVBLEN)'(`RK) + p;
assign RightShiftX = (`DIVBLEN)'(`RK) - {{(`DIVBLEN-`RK){1'b0}}, IntBits[`RK-1:0]};
assign SqrtX = (Xe[0]^ell[0]) ? {1'b0, ~XZero, XPreproc[`DIVb-1:1]} : {~XZero, XPreproc}; // Bottom bit of XPreproc is always zero because DIVb is larger than XLEN and NF
assign DivX = {3'b000, ~XZero, XPreproc};
2022-10-25 17:48:43 +00:00
// *** explain why X is shifted between radices (initial assignment of WS=RX)
if (`RADIX == 2) assign PreShiftX = Sqrt ? {3'b111, SqrtX} : DivX;
else assign PreShiftX = Sqrt ? {2'b11, SqrtX, 1'b0} : DivX;
2022-12-02 20:31:08 +00:00
assign X = MDUE ? DivX >> RightShiftX : PreShiftX;
2022-07-07 23:01:33 +00:00
// radix 2 radix 4
// 1 copies DIVLEN+2 DIVLEN+2/2
// 2 copies DIVLEN+2/2 DIVLEN+2/2*2
// 4 copies DIVLEN+2/4 DIVLEN+2/2*4
// 8 copies DIVLEN+2/8 DIVLEN+2/2*8
// DIVRESLEN = DIVLEN or DIVLEN+2
// r = 1 or 2
// DIVRESLEN/(r*`DIVCOPIES)
2022-12-02 20:31:08 +00:00
flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM);
flopen #(1) swapreg(clk, IFDivStartE, CalcOTFCSwap, OTFCSwap);
2022-12-02 20:31:08 +00:00
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, Calcn, n);
flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, Calcm, m);
expcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero, .ell, .m(Calcm), .Qe(QeE));
endmodule
module expcalc(
input logic [`FMTBITS-1:0] Fmt,
input logic [`NE-1:0] Xe, Ye,
input logic Sqrt,
input logic XZero,
input logic [`DIVBLEN:0] ell, m,
output logic [`NE+1:0] Qe
);
logic [`NE-2:0] Bias;
2022-07-22 22:02:04 +00:00
logic [`NE+1:0] SXExp;
logic [`NE+1:0] SExp;
logic [`NE+1:0] DExp;
if (`FPSIZES == 1) begin
assign Bias = (`NE-1)'(`BIAS);
end else if (`FPSIZES == 2) begin
assign Bias = Fmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
end else if (`FPSIZES == 3) begin
always_comb
case (Fmt)
`FMT: Bias = (`NE-1)'(`BIAS);
`FMT1: Bias = (`NE-1)'(`BIAS1);
`FMT2: Bias = (`NE-1)'(`BIAS2);
default: Bias = 'x;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (Fmt)
2'h3: Bias = (`NE-1)'(`Q_BIAS);
2'h1: Bias = (`NE-1)'(`D_BIAS);
2'h0: Bias = (`NE-1)'(`S_BIAS);
2'h2: Bias = (`NE-1)'(`H_BIAS);
endcase
end
assign SXExp = {2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, ell} - (`NE+2)'(`BIAS);
2022-07-22 22:02:04 +00:00
assign SExp = {SXExp[`NE+1], SXExp[`NE+1:1]} + {2'b0, Bias};
// correct exponent for denormalized input's normalization shifts
assign DExp = ({2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, ell} - {2'b0, Ye} + {{(`NE+1-`DIVBLEN){1'b0}}, m} + {3'b0, Bias}) & {`NE+2{~XZero}};
2022-07-22 22:02:04 +00:00
assign Qe = Sqrt ? SExp : DExp;
2022-07-07 23:01:33 +00:00
endmodule