/////////////////////////////////////////// // fdivsqrtpreproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpreproc ( input logic clk, input logic IFDivStartE, input logic [`NF:0] Xm, Ym, input logic [`NE-1:0] Xe, Ye, input logic [`FMTBITS-1:0] Fmt, input logic Sqrt, input logic XZero, input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B input logic [2:0] Funct3E, Funct3M, input logic MDUE, W64E, output logic [`DIVBLEN:0] n, m, output logic OTFCSwap, ALTBM, BZero, As, output logic [`NE+1:0] QeM, output logic [`DIVb+3:0] X, output logic [`DIVb-1:0] DPreproc ); logic [`DIVb-1:0] XPreproc; logic [`DIVb:0] SqrtX; logic [`DIVb+3:0] DivX; logic [`NE+1:0] QeE; // Intdiv signals logic [`DIVb-1:0] IFNormLenX, IFNormLenD; logic [`XLEN-1:0] PosA, PosB; logic Bs, CalcOTFCSwap, ALTBE; logic [`XLEN-1:0] A64, B64; logic [`DIVBLEN:0] Calcn, Calcm; logic [`DIVBLEN:0] ZeroDiff, IntBits, RightShiftX; logic [`DIVBLEN:0] pPlusr, pPrCeil, p, ell; logic [`LOGRK-1:0] pPrTrunc; logic [`DIVb+3:0] PreShiftX; // ***can probably merge X LZC with conversion // cout the number of leading zeros assign As = ForwardedSrcAE[`XLEN-1] & ~Funct3E[0]; assign Bs = ForwardedSrcBE[`XLEN-1] & ~Funct3E[0]; assign A64 = W64E ? {{(`XLEN-32){As}}, ForwardedSrcAE[31:0]} : ForwardedSrcAE; assign B64 = W64E ? {{(`XLEN-32){Bs}}, ForwardedSrcBE[31:0]} : ForwardedSrcBE; assign CalcOTFCSwap = (As ^ Bs) & MDUE; assign PosA = As ? -A64 : A64; assign PosB = Bs ? -B64 : B64; assign BZero = |ForwardedSrcBE; assign IFNormLenX = MDUE ? {PosA, {(`DIVb-`XLEN){1'b0}}} : {Xm, {(`DIVb-`NF-1){1'b0}}}; assign IFNormLenD = MDUE ? {PosB, {(`DIVb-`XLEN){1'b0}}} : {Ym, {(`DIVb-`NF-1){1'b0}}}; lzc #(`DIVb) lzcX (IFNormLenX, ell); lzc #(`DIVb) lzcY (IFNormLenD, Calcm); assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, ~MDUE}); // had issue with (`DIVBLEN+1)'(~MDUE) so using this instead assign DPreproc = IFNormLenD << (Calcm + {{`DIVBLEN{1'b0}}, ~MDUE}); assign ZeroDiff = Calcm - ell; assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B assign p = ALTBE ? '0 : ZeroDiff; assign pPlusr = (`DIVBLEN)'(`LOGR) + p; assign pPrTrunc = pPlusr[`LOGRK-1:0]; assign pPrCeil = (pPlusr >> `LOGRK) + {{`DIVBLEN{1'b0}}, |(pPrTrunc)}; assign Calcn = (pPrCeil << `LOGK) - 1; assign IntBits = (`DIVBLEN)'(`RK) + p; assign RightShiftX = (`DIVBLEN)'(`RK) - {{(`DIVBLEN-`RK){1'b0}}, IntBits[`RK-1:0]}; assign SqrtX = (Xe[0]^ell[0]) ? {1'b0, ~XZero, XPreproc[`DIVb-1:1]} : {~XZero, XPreproc}; // Bottom bit of XPreproc is always zero because DIVb is larger than XLEN and NF assign DivX = {3'b000, ~XZero, XPreproc}; // *** explain why X is shifted between radices (initial assignment of WS=RX) if (`RADIX == 2) assign PreShiftX = Sqrt ? {3'b111, SqrtX} : DivX; else assign PreShiftX = Sqrt ? {2'b11, SqrtX, 1'b0} : DivX; assign X = MDUE ? DivX >> RightShiftX : PreShiftX; // radix 2 radix 4 // 1 copies DIVLEN+2 DIVLEN+2/2 // 2 copies DIVLEN+2/2 DIVLEN+2/2*2 // 4 copies DIVLEN+2/4 DIVLEN+2/2*4 // 8 copies DIVLEN+2/8 DIVLEN+2/2*8 // DIVRESLEN = DIVLEN or DIVLEN+2 // r = 1 or 2 // DIVRESLEN/(r*`DIVCOPIES) flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM); flopen #(1) swapreg(clk, IFDivStartE, CalcOTFCSwap, OTFCSwap); flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM); flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, Calcn, n); flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, Calcm, m); expcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero, .ell, .m(Calcm), .Qe(QeE)); endmodule module expcalc( input logic [`FMTBITS-1:0] Fmt, input logic [`NE-1:0] Xe, Ye, input logic Sqrt, input logic XZero, input logic [`DIVBLEN:0] ell, m, output logic [`NE+1:0] Qe ); logic [`NE-2:0] Bias; logic [`NE+1:0] SXExp; logic [`NE+1:0] SExp; logic [`NE+1:0] DExp; if (`FPSIZES == 1) begin assign Bias = (`NE-1)'(`BIAS); end else if (`FPSIZES == 2) begin assign Bias = Fmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1); end else if (`FPSIZES == 3) begin always_comb case (Fmt) `FMT: Bias = (`NE-1)'(`BIAS); `FMT1: Bias = (`NE-1)'(`BIAS1); `FMT2: Bias = (`NE-1)'(`BIAS2); default: Bias = 'x; endcase end else if (`FPSIZES == 4) begin always_comb case (Fmt) 2'h3: Bias = (`NE-1)'(`Q_BIAS); 2'h1: Bias = (`NE-1)'(`D_BIAS); 2'h0: Bias = (`NE-1)'(`S_BIAS); 2'h2: Bias = (`NE-1)'(`H_BIAS); endcase end assign SXExp = {2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, ell} - (`NE+2)'(`BIAS); assign SExp = {SXExp[`NE+1], SXExp[`NE+1:1]} + {2'b0, Bias}; // correct exponent for denormalized input's normalization shifts assign DExp = ({2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, ell} - {2'b0, Ye} + {{(`NE+1-`DIVBLEN){1'b0}}, m} + {3'b0, Bias}) & {`NE+2{~XZero}}; assign Qe = Sqrt ? SExp : DExp; endmodule