cvw/pipelined/src/fpu/fmalza.sv

61 lines
2.6 KiB
Systemverilog
Raw Normal View History

2022-08-01 18:07:38 +00:00
///////////////////////////////////////////
//
// Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu
// Modified:
//
// Purpose: Leading Zero Anticipator
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
2022-08-01 23:18:02 +00:00
module fmalza #(WIDTH) ( // [Schmookler & Nowka, Leading zero anticipation and detection, IEEE Sym. Computer Arithmetic, 2001]
input logic [WIDTH-1:0] A, // addend
2022-08-01 18:36:21 +00:00
input logic [2*`NF+3:0] Pm, // product
2022-08-01 22:37:09 +00:00
input logic Cin, // carry in
input logic sub,
2022-08-01 23:18:02 +00:00
output logic [$clog2(WIDTH+1)-1:0] SCnt // normalization shift count for the positive result
2022-08-01 18:07:38 +00:00
);
2022-08-01 18:23:39 +00:00
2022-08-01 23:13:16 +00:00
logic [WIDTH:0] F;
2022-08-01 22:47:03 +00:00
logic [WIDTH-1:0] B, P, G, K;
logic [WIDTH-1:0] Pp1, Gm1, Km1;
2022-08-01 18:07:38 +00:00
2022-08-01 22:40:12 +00:00
assign B = {{(`NF+2){1'b0}}, Pm}; // Zero extend product
2022-08-01 18:07:38 +00:00
2022-08-01 22:47:03 +00:00
assign P = A^B;
assign G = A&B;
assign K= ~A&~B;
2022-08-01 18:07:38 +00:00
2022-08-01 22:47:03 +00:00
assign Pp1 = {sub, P[WIDTH-1:1]};
assign Gm1 = {G[WIDTH-2:0], Cin};
assign Km1 = {K[WIDTH-2:0], ~Cin};
2022-08-01 18:36:21 +00:00
2022-08-01 18:07:38 +00:00
// Apply function to determine Leading pattern
// - note: the paper linked above uses the numbering system where 0 is the most significant bit
2022-08-01 22:47:03 +00:00
assign F[WIDTH] = ~sub&P[WIDTH-1];
assign F[WIDTH-1:0] = (Pp1&(G&~Km1 | K&~Gm1)) | (~Pp1&(K&~Km1 | G&~Gm1));
2022-08-01 18:07:38 +00:00
2022-08-01 22:47:03 +00:00
lzc #(WIDTH+1) lzc (.num(F), .ZeroCnt(SCnt));
2022-08-01 18:07:38 +00:00
endmodule