cvw/pipelined/src/fpu/fpu.sv

409 lines
23 KiB
Systemverilog
Raw Normal View History

2021-05-24 13:28:16 +00:00
///////////////////////////////////////////
// fpu.sv
2021-05-24 13:28:16 +00:00
//
2023-01-11 19:06:37 +00:00
// Written: me@KatherineParry.com, James Stine, Brett Mathis, David Harris
2021-06-23 20:42:40 +00:00
// Modified: 6/23/2021
2021-05-24 13:28:16 +00:00
//
2023-01-11 19:06:37 +00:00
// Purpose: Floating Point Unit Top-Level Interface
2021-05-24 13:28:16 +00:00
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
2021-05-24 13:28:16 +00:00
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
2021-05-24 13:28:16 +00:00
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
2021-05-24 13:28:16 +00:00
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
2021-04-08 18:03:21 +00:00
`include "wally-config.vh"
2021-04-04 18:09:13 +00:00
module fpu (
input logic clk,
input logic reset,
2023-01-11 19:31:28 +00:00
// Hazards
input logic StallE, StallM, StallW, // stall signals (from HZU)
input logic FlushE, FlushM, FlushW, // flush signals (from HZU)
2023-01-11 19:06:37 +00:00
output logic FPUStallD, // Stall the decode stage (To HZU)
2023-01-11 19:31:28 +00:00
output logic FDivBusyE, // Is the divide/sqrt unit busy (stall execute stage) (to HZU)
// CSRs
input logic [1:0] STATUS_FS, // Is floating-point enabled? (From privileged unit)
input logic [2:0] FRM_REGW, // Rounding mode (from CSR)
// Decode stage
input logic [31:0] InstrD, // instruction (from IFU)
// Execute stage
input logic [2:0] Funct3E, // Funct fields of instruction specify type of operations
input logic IntDivE, W64E, // Integer division on FPU
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // Integer input for convert, move, and int div (from IEU)
input logic [4:0] RdE, // which FP register to write to (from IEU)
output logic FWriteIntE, // integer register write enable (to IEU)
output logic FCvtIntE, // Convert to int (to IEU)
2023-01-11 19:31:28 +00:00
// Memory stage
input logic [2:0] Funct3M, // Funct fields of instruction specify type of operations
input logic [4:0] RdM, // which FP register to write to (from IEU)
output logic FRegWriteM, // FP register write enable (to privileged unit)
output logic FpLoadStoreM, // Fp load instruction? (to LSU)
output logic [`FLEN-1:0] FWriteDataM, // Data to be written to memory (to LSU)
output logic [`XLEN-1:0] FIntResM, // data to be written to integer register (to IEU)
output logic IllegalFPUInstrM, // Is the instruction an illegal fpu instruction (to privileged unit)
2023-01-11 19:06:37 +00:00
output logic [4:0] SetFflagsM, // FPU flags (to privileged unit)
2023-01-11 19:31:28 +00:00
// Writeback stage
input logic [4:0] RdW, // which FP register to write to (from IEU)
input logic [`FLEN-1:0] ReadDataW, // Read data (from LSU)
output logic [`XLEN-1:0] FCvtIntResW, // convert result to to be written to integer register (to IEU)
output logic FCvtIntW, // select FCvtIntRes (to IEU)
2023-01-11 19:46:36 +00:00
output logic [`XLEN-1:0] FIntDivResultW // Result from integer division (to IEU)
2021-07-24 18:59:57 +00:00
);
2023-01-11 19:31:28 +00:00
// RISC-V FPU specifics:
// - multiprecision support uses NAN-boxing, putting 1's in unused msbs
// - RISC-V detects underflow after rounding
2022-08-22 20:43:04 +00:00
// control signals
2023-01-11 19:31:28 +00:00
logic FRegWriteW; // FP register write enable
logic [2:0] FrmM; // FP rounding mode
logic [`FMTBITS-1:0] FmtE, FmtM; // FP precision 0-single 1-double
logic FDivStartE, IDivStartE; // Start division or squareroot
logic FWriteIntM; // Write to integer register
logic [1:0] ForwardXE, ForwardYE, ForwardZE; // forwarding mux control signals
logic [2:0] OpCtrlE, OpCtrlM; // Select which opperation to do in each component
logic [1:0] FResSelE, FResSelM, FResSelW; // Select one of the results that finish in the memory stage
logic [1:0] PostProcSelE, PostProcSelM; // select result in the post processing unit
logic [4:0] Adr1D, Adr2D, Adr3D; // register adresses of each input
logic [4:0] Adr1E, Adr2E, Adr3E; // register adresses of each input
logic XEnD, YEnD, ZEnD; // X, Y, Z inputs used for current operation
logic XEnE, YEnE, ZEnE; // X, Y, Z inputs used for current operation
logic FRegWriteE; // Write floating-point register
// regfile signals
2023-01-11 19:31:28 +00:00
logic [`FLEN-1:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage
logic [`FLEN-1:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage
logic [`FLEN-1:0] XE; // Input 1 to the various units (after forwarding)
logic [`XLEN-1:0] IntSrcXE; // Input 1 to the various units (after forwarding)
2023-01-11 19:31:28 +00:00
logic [`FLEN-1:0] PreYE, YE; // Input 2 to the various units (after forwarding)
logic [`FLEN-1:0] PreZE, ZE; // Input 3 to the various units (after forwarding)
// unpacking signals
2023-01-11 19:31:28 +00:00
logic XsE, YsE, ZsE; // input's sign - execute stage
logic XsM, YsM; // input's sign - memory stage
logic [`NE-1:0] XeE, YeE, ZeE; // input's exponent - execute stage
logic [`NE-1:0] ZeM; // input's exponent - memory stage
logic [`NF:0] XmE, YmE, ZmE; // input's significand - execute stage
logic [`NF:0] XmM, YmM, ZmM; // input's significand - memory stage
logic XNaNE, YNaNE, ZNaNE; // is the input a NaN - execute stage
logic XNaNM, YNaNM, ZNaNM; // is the input a NaN - memory stage
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
logic XSubnormE; // is the input Subnormalized
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
logic XZeroM, YZeroM; // is the input zero - memory stage
logic XInfE, YInfE, ZInfE; // is the input infinity - execute stage
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
logic XExpMaxE; // is the exponent all ones (max value)
// Fma Signals
2023-01-11 19:31:28 +00:00
logic [3*`NF+3:0] SmE, SmM; // Sum significand
logic FmaAStickyE, FmaAStickyM; // FMA addend sticky bit output
logic [`NE+1:0] SeE,SeM; // Sum exponent
logic InvAE, InvAM; // Invert addend
logic AsE, AsM; // Addend sign
logic PsE, PsM; // Product sign
logic SsE, SsM; // Sum sign
logic [$clog2(3*`NF+5)-1:0] SCntE, SCntM; // LZA sum leading zero count
// Cvt Signals
2023-01-11 19:31:28 +00:00
logic [`NE:0] CeE, CeM; // convert intermediate expoent
logic [`LOGCVTLEN-1:0] CvtShiftAmtE, CvtShiftAmtM; // how much to shift by
logic CvtResSubnormUfE, CvtResSubnormUfM; // does the result underflow or is Subnormalized
logic CsE, CsM; // convert result sign
logic IntZeroE, IntZeroM; // is the integer zero?
logic [`CVTLEN-1:0] CvtLzcInE, CvtLzcInM; // input to the Leading Zero Counter (priority encoder)
logic [`XLEN-1:0] FCvtIntResM; // fcvt integer result (for IEU)
2022-06-23 16:11:50 +00:00
2023-01-11 19:31:28 +00:00
// divide signals
logic [`DIVb:0] QmM; // fdivsqrt signifcand
logic [`NE+1:0] QeM; // fdivsqrt exponent
logic DivStickyM; // fdivsqrt sticky bit
logic FDivDoneE, IFDivStartE; // fdivsqrt control signals
2023-01-11 19:46:36 +00:00
logic [`XLEN-1:0] FIntDivResultM; // fdivsqrt integer division result (for IEU)
// result and flag signals
2023-01-11 19:31:28 +00:00
logic [`XLEN-1:0] ClassResE; // classify result
logic [`XLEN-1:0] FIntResE; // classify result
logic [`FLEN-1:0] FpResM, FpResW; // classify result
logic [`FLEN-1:0] PostProcResM; // classify result
logic [4:0] PostProcFlgM; // classify result
logic [`FLEN-1:0] CmpFpResE; // compare result
logic [`XLEN-1:0] CmpIntResE; // compare result
logic CmpNVE; // compare invalid flag (Not Valid)
logic [`FLEN-1:0] SgnResE; // sign injection result
logic [`FLEN-1:0] PreFpResE, PreFpResM; // selected result that is ready in the memory stage
logic PreNVE, PreNVM; // selected flag that is ready in the memory stage
2023-01-11 19:46:36 +00:00
logic [`FLEN-1:0] FResultW; // final FP result being written to the FP register
// other signals
logic [`FLEN-1:0] AlignedSrcAE; // align SrcA to the floating point format
2022-06-02 19:50:28 +00:00
logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
logic [`FLEN-1:0] BoxedOneE; // Zero value for Z for multiplication, with NaN boxing if needed
2022-12-02 19:30:49 +00:00
logic StallUnpackedM;
// DECODE STAGE
//////////////////////////////////////////////////////////////////////////////////////////
// |||||||||||
// ||| |||
// ||| |||
// ||| |||
// ||| |||
// ||| |||
// |||||||||||
//////////////////////////////////////////////////////////////////////////////////////////
// calculate FP control signals
fctrl fctrl (.Funct7D(InstrD[31:25]), .OpD(InstrD[6:0]), .Rs2D(InstrD[24:20]), .Funct3D(InstrD[14:12]),
2023-01-11 19:06:37 +00:00
.Funct3E, .IntDivE, .InstrD,
.StallE, .StallM, .StallW, .FlushE, .FlushM, .FlushW, .FRM_REGW, .STATUS_FS, .FDivBusyE,
.reset, .clk, .FRegWriteE, .FRegWriteM, .FRegWriteW, .FrmM, .FmtE, .FmtM,
.FDivStartE, .IDivStartE, .FWriteIntE, .FCvtIntE, .FWriteIntM, .OpCtrlE, .OpCtrlM, .IllegalFPUInstrM, .XEnD, .YEnD, .ZEnD, .XEnE, .YEnE, .ZEnE,
.FResSelE, .FResSelM, .FResSelW, .PostProcSelE, .PostProcSelM, .FCvtIntW, .Adr1D, .Adr2D, .Adr3D, .Adr1E, .Adr2E, .Adr3E);
// FP register file
fregfile fregfile (.clk, .reset, .we4(FRegWriteW),
.a1(InstrD[19:15]), .a2(InstrD[24:20]), .a3(InstrD[31:27]),
2023-01-11 19:46:36 +00:00
.a4(RdW), .wd4(FResultW),
.rd1(FRD1D), .rd2(FRD2D), .rd3(FRD3D));
// D/E pipeline registers
2022-06-02 19:50:28 +00:00
flopenrc #(`FLEN) DEReg1(clk, reset, FlushE, ~StallE, FRD1D, FRD1E);
flopenrc #(`FLEN) DEReg2(clk, reset, FlushE, ~StallE, FRD2D, FRD2E);
flopenrc #(`FLEN) DEReg3(clk, reset, FlushE, ~StallE, FRD3D, FRD3E);
// EXECUTION STAGE
//////////////////////////////////////////////////////////////////////////////////////////
// ||||||||||||
// |||
// |||
// |||||||||
// |||
// |||
// ||||||||||||
//////////////////////////////////////////////////////////////////////////////////////////
// Hazard unit for FPU
// - determines if any forwarding or stalls are needed
fhazard fhazard(.Adr1D, .Adr2D, .Adr3D, .Adr1E, .Adr2E, .Adr3E, .FRegWriteE, .FRegWriteM, .FRegWriteW, .RdE, .RdM, .RdW, .FResSelM,
.XEnD, .YEnD, .ZEnD, .FPUStallD, .ForwardXE, .ForwardYE, .ForwardZE);
// forwarding muxs
2023-01-11 19:46:36 +00:00
mux3 #(`FLEN) fxemux (FRD1E, FResultW, PreFpResM, ForwardXE, XE);
mux3 #(`FLEN) fyemux (FRD2E, FResultW, PreFpResM, ForwardYE, PreYE);
mux3 #(`FLEN) fzemux (FRD3E, FResultW, PreFpResM, ForwardZE, PreZE);
2022-06-02 19:50:28 +00:00
generate
if(`FPSIZES == 1) assign BoxedOneE = {2'b0, {`NE-1{1'b1}}, (`NF)'(0)};
else if(`FPSIZES == 2)
mux2 #(`FLEN) fonemux ({{`FLEN-`LEN1{1'b1}}, 2'b0, {`NE1-1{1'b1}}, (`NF1)'(0)}, {2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fonemux ({{`FLEN-`S_LEN{1'b1}}, 2'b0, {`S_NE-1{1'b1}}, (`S_NF)'(0)},
{{`FLEN-`D_LEN{1'b1}}, 2'b0, {`D_NE-1{1'b1}}, (`D_NF)'(0)},
{{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, (`H_NF)'(0)},
{2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
endgenerate
mux2 #(`FLEN) fyaddmux (PreYE, BoxedOneE, OpCtrlE[2]&OpCtrlE[1]&(FResSelE==2'b01)&(PostProcSelE==2'b10), YE); // Force Z to be 0 for multiply instructions
2022-06-02 19:50:28 +00:00
2022-01-06 23:03:29 +00:00
// Force Z to be 0 for multiply instructions
2022-06-02 19:50:28 +00:00
generate
if(`FPSIZES == 1) assign BoxedZeroE = 0;
else if(`FPSIZES == 2)
2022-06-06 16:06:04 +00:00
mux2 #(`FLEN) fmulzeromux ({{`FLEN-`LEN1{1'b1}}, {`LEN1{1'b0}}}, (`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
2022-06-02 19:50:28 +00:00
else if(`FPSIZES == 3 | `FPSIZES == 4)
2022-06-06 16:06:04 +00:00
mux4 #(`FLEN) fmulzeromux ({{`FLEN-`S_LEN{1'b1}}, {`S_LEN{1'b0}}},
{{`FLEN-`D_LEN{1'b1}}, {`D_LEN{1'b0}}},
{{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}},
2022-06-02 19:50:28 +00:00
(`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
endgenerate
mux3 #(`FLEN) fzmulmux (PreZE, BoxedZeroE, PreYE, {OpCtrlE[2]&OpCtrlE[1], OpCtrlE[2]&~OpCtrlE[1]}, ZE);
2022-06-02 19:50:28 +00:00
// unpack unit
// - splits FP inputs into their various parts
2023-01-06 16:35:23 +00:00
// - does some classifications (SNaN, NaN, Subnorm, Norm, Zero, Infifnity)
unpack unpack (.X(XE), .Y(YE), .Z(ZE), .Fmt(FmtE), .Xs(XsE), .Ys(YsE), .Zs(ZsE),
.Xe(XeE), .Ye(YeE), .Ze(ZeE), .Xm(XmE), .Ym(YmE), .Zm(ZmE), .YEn(YEnE),
.XNaN(XNaNE), .YNaN(YNaNE), .ZNaN(ZNaNE), .XSNaN(XSNaNE), .XEn(XEnE),
2023-01-07 14:26:29 +00:00
.YSNaN(YSNaNE), .ZSNaN(ZSNaNE), .XSubnorm(XSubnormE),
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE), .XInf(XInfE), .YInf(YInfE),
.ZEn(ZEnE), .ZInf(ZInfE), .XExpMax(XExpMaxE));
// fused multiply add
// - fadd/fsub
// - fmul
// - fmadd/fnmadd/fmsub/fnmsub
fma fma (.Xs(XsE), .Ys(YsE), .Zs(ZsE),
.Xe(XeE), .Ye(YeE), .Ze(ZeE),
.Xm(XmE), .Ym(YmE), .Zm(ZmE),
2022-07-07 23:01:33 +00:00
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE),
2022-12-23 08:18:39 +00:00
.OpCtrl(OpCtrlE),
.As(AsE), .Ps(PsE), .Ss(SsE), .Se(SeE),
2022-12-21 19:31:22 +00:00
.Sm(SmE),
2022-12-20 22:43:30 +00:00
.InvA(InvAE), .SCnt(SCntE),
.ASticky(FmaAStickyE));
// divide and squareroot
// - fdiv
// - fsqrt
// *** add other opperations
2022-08-29 11:04:05 +00:00
fdivsqrt fdivsqrt(.clk, .reset, .FmtE, .XmE, .YmE, .XeE, .YeE, .SqrtE(OpCtrlE[0]), .SqrtM(OpCtrlM[0]),
2022-11-16 18:00:07 +00:00
.XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE, .FDivStartE, .IDivStartE, .XsE,
2023-01-11 19:06:37 +00:00
.ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .IntDivE, .W64E,
2023-01-11 19:31:28 +00:00
.StallM, .FlushE, .DivStickyM, .FDivBusyE, .IFDivStartE, .FDivDoneE, .QeM,
2023-01-11 19:46:36 +00:00
.QmM, .FIntDivResultM /*, .DivDone(DivDoneM) */);
//
// compare
// - fmin/fmax
// - flt/fle/feq
fcmp fcmp (.Fmt(FmtE), .OpCtrl(OpCtrlE), .Xs(XsE), .Ys(YsE), .Xe(XeE), .Ye(YeE),
.Xm(XmE), .Ym(YmE), .XZero(XZeroE), .YZero(YZeroE), .XNaN(XNaNE), .YNaN(YNaNE),
.XSNaN(XSNaNE), .YSNaN(YSNaNE), .X(XE), .Y(YE), .CmpNV(CmpNVE),
.CmpFpRes(CmpFpResE), .CmpIntRes(CmpIntResE));
// sign injection
// - fsgnj/fsgnjx/fsgnjn
fsgninj fsgninj(.OpCtrl(OpCtrlE[1:0]), .Xs(XsE), .Ys(YsE), .X(XE), .Fmt(FmtE), .SgnRes(SgnResE));
// classify
// - fclass
2023-01-06 16:35:23 +00:00
fclassify fclassify (.Xs(XsE), .XSubnorm(XSubnormE), .XZero(XZeroE), .XNaN(XNaNE),
.XInf(XInfE), .XSNaN(XSNaNE), .ClassRes(ClassResE));
// convert
// - fcvt.*.*
fcvt fcvt (.Xs(XsE), .Xe(XeE), .Xm(XmE), .Int(ForwardedSrcAE), .OpCtrl(OpCtrlE),
.ToInt(FWriteIntE), .XZero(XZeroE), .Fmt(FmtE), .Ce(CeE),
2023-01-06 16:35:23 +00:00
.ShiftAmt(CvtShiftAmtE), .ResSubnormUf(CvtResSubnormUfE), .Cs(CsE), .IntZero(IntZeroE),
2022-07-08 19:30:43 +00:00
.LzcIn(CvtLzcInE));
// data to be stored in memory - to IEU
// - FP uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
flopenrc #(`FLEN) FWriteDataMReg (clk, reset, FlushM, ~StallM, YE, FWriteDataM);
2022-06-02 19:50:28 +00:00
// NaN Block SrcA
generate
if(`FPSIZES == 1) assign AlignedSrcAE = {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE};
else if(`FPSIZES == 2)
mux2 #(`FLEN) SrcAMux ({{`FLEN-`LEN1{1'b1}}, ForwardedSrcAE[`LEN1-1:0]}, {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE);
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) SrcAMux ({{`FLEN-`S_LEN{1'b1}}, ForwardedSrcAE[`S_LEN-1:0]},
{{`FLEN-`D_LEN{1'b1}}, ForwardedSrcAE[`D_LEN-1:0]},
{{`FLEN-`H_LEN{1'b1}}, ForwardedSrcAE[`H_LEN-1:0]},
{{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE); // NaN boxing zeroes
endgenerate
// select a result that may be written to the FP register
mux3 #(`FLEN) FResMux(SgnResE, AlignedSrcAE, CmpFpResE, {OpCtrlE[2], &OpCtrlE[1:0]}, PreFpResE);
assign PreNVE = CmpNVE&(OpCtrlE[2]|FWriteIntE);
// select the result that may be written to the integer register - to IEU
2022-08-01 19:56:25 +00:00
logic [`FLEN-1:0] SgnExtXE;
generate
if(`FPSIZES == 1)
assign SgnExtXE = XE;
else if(`FPSIZES == 2)
mux2 #(`FLEN) sgnextmux ({{`FLEN-`LEN1{XsE}}, XE[`LEN1-1:0]}, XE, FmtE, SgnExtXE);
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fmulzeromux ({{`FLEN-`H_LEN{XsE}}, XE[`H_LEN-1:0]},
{{`FLEN-`S_LEN{XsE}}, XE[`S_LEN-1:0]},
{{`FLEN-`D_LEN{XsE}}, XE[`D_LEN-1:0]},
XE, FmtE, SgnExtXE); // NaN boxing zeroes
endgenerate
if (`FLEN>`XLEN)
2022-08-01 19:56:25 +00:00
assign IntSrcXE = SgnExtXE[`XLEN-1:0];
2022-06-06 16:06:04 +00:00
else
2022-08-01 19:56:25 +00:00
assign IntSrcXE = {{`XLEN-`FLEN{XsE}}, SgnExtXE};
mux3 #(`XLEN) IntResMux (ClassResE, IntSrcXE, CmpIntResE, {~FResSelE[1], FResSelE[0]}, FIntResE);
// *** DH 5/25/22: CvtRes will move to mem stage. Premux in execute to save area, then make sure stalls are ok
2022-05-28 09:44:55 +00:00
// *** make sure the fpu matches the chapter diagram
// E/M pipe registers
2022-12-02 19:30:49 +00:00
assign StallUnpackedM = StallM | (FDivBusyE & ~IFDivStartE | FDivDoneE); // Need to stall during divsqrt iterations to avoid capturing bad flags from stale forwarded sources
flopenrc #(`NF+1) EMFpReg2 (clk, reset, FlushM, ~StallM, XmE, XmM);
flopenrc #(`NF+1) EMFpReg3 (clk, reset, FlushM, ~StallM, YmE, YmM);
2022-12-23 07:58:14 +00:00
flopenrc #(`FLEN) EMFpReg4 (clk, reset, FlushM, ~StallM, {ZeE,ZmE}, {ZeM,ZmM});
flopenrc #(`XLEN) EMFpReg6 (clk, reset, FlushM, ~StallM, FIntResE, FIntResM);
flopenrc #(`FLEN) EMFpReg7 (clk, reset, FlushM, ~StallM, PreFpResE, PreFpResM);
2023-01-07 14:26:29 +00:00
flopenr #(13) EMFpReg5 (clk, reset, ~StallUnpackedM,
{XsE, YsE, XZeroE, YZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
{XsM, YsM, XZeroM, YZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
flopenrc #(1) EMRegCmpFlg (clk, reset, FlushM, ~StallM, PreNVE, PreNVM);
flopenrc #(3*`NF+4) EMRegFma2(clk, reset, FlushM, ~StallM, SmE, SmM);
flopenrc #($clog2(3*`NF+5)+7+`NE) EMRegFma4(clk, reset, FlushM, ~StallM,
{FmaAStickyE, InvAE, SCntE, AsE, PsE, SsE, SeE},
{FmaAStickyM, InvAM, SCntM, AsM, PsM, SsM, SeM});
flopenrc #(`NE+`LOGCVTLEN+`CVTLEN+4) EMRegCvt(clk, reset, FlushM, ~StallM,
2023-01-06 16:35:23 +00:00
{CeE, CvtShiftAmtE, CvtResSubnormUfE, CsE, IntZeroE, CvtLzcInE},
{CeM, CvtShiftAmtM, CvtResSubnormUfM, CsM, IntZeroM, CvtLzcInM});
// BEGIN MEMORY STAGE
//////////////////////////////////////////////////////////////////////////////////////////
// ||| |||
// |||||| ||||||
// ||| ||| ||| |||
// ||| ||||| |||
// ||| ||| |||
// ||| |||
// ||| |||
//////////////////////////////////////////////////////////////////////////////////////////
assign FpLoadStoreM = FResSelM[1];
2022-06-20 22:53:13 +00:00
2022-12-23 08:18:39 +00:00
postprocess postprocess(.Xs(XsM), .Ys(YsM), .Xm(XmM), .Ym(YmM), .Zm(ZmM), .Frm(FrmM), .Fmt(FmtM),
2023-01-07 14:26:29 +00:00
.FmaASticky(FmaAStickyM), .XZero(XZeroM), .YZero(YZeroM), .XInf(XInfM), .YInf(YInfM), .DivQm(QmM), .FmaSs(SsM),
.ZInf(ZInfM), .XNaN(XNaNM), .YNaN(YNaNM), .ZNaN(ZNaNM), .XSNaN(XSNaNM), .YSNaN(YSNaNM), .ZSNaN(ZSNaNM), .FmaSm(SmM), .DivQe(QeM), /*.DivDone(DivDoneM), */
2023-01-07 14:26:29 +00:00
.FmaAs(AsM), .FmaPs(PsM), .OpCtrl(OpCtrlM), .FmaSCnt(SCntM), .FmaSe(SeM),
2023-01-11 19:31:28 +00:00
.CvtCe(CeM), .CvtResSubnormUf(CvtResSubnormUfM),.CvtShiftAmt(CvtShiftAmtM), .CvtCs(CsM), .ToInt(FWriteIntM), .DivS(DivStickyM),
.CvtLzcIn(CvtLzcInM), .IntZero(IntZeroM), .PostProcSel(PostProcSelM), .PostProcRes(PostProcResM), .PostProcFlg(PostProcFlgM), .FCvtIntRes(FCvtIntResM));
// FPU flag selection - to privileged
mux2 #(5) FPUFlgMux ({PreNVM&~FResSelM[1], 4'b0}, PostProcFlgM, ~FResSelM[1]&FResSelM[0], SetFflagsM);
mux2 #(`FLEN) FPUResMux (PreFpResM, PostProcResM, FResSelM[0], FpResM);
// M/W pipe registers
flopenrc #(`FLEN) MWRegFp(clk, reset, FlushW, ~StallW, FpResM, FpResW);
flopenrc #(`XLEN) MWRegIntCvtRes(clk, reset, FlushW, ~StallW, FCvtIntResM, FCvtIntResW);
2023-01-11 19:46:36 +00:00
flopenrc #(`XLEN) MWRegIntDivRes(clk, reset, FlushW, ~StallW, FIntDivResultM, FIntDivResultW);
// BEGIN WRITEBACK STAGE
//////////////////////////////////////////////////////////////////////////////////////////
// ||| |||
// ||| |||
// ||| ||| |||
// ||| ||||| |||
// ||| ||| ||| |||
// |||||| ||||||
// ||| |||
//////////////////////////////////////////////////////////////////////////////////////////
// select the result to be written to the FP register
2023-01-11 19:46:36 +00:00
mux2 #(`FLEN) FResultMux (FpResW, ReadDataW, FResSelW[1], FResultW);
2021-06-01 19:45:32 +00:00
endmodule // fpu