FPU comments

This commit is contained in:
David Harris 2023-01-11 11:31:28 -08:00
parent 654abcde61
commit 15026f61f7
3 changed files with 91 additions and 84 deletions

View File

@ -43,7 +43,7 @@ module fdivsqrt(
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic [2:0] Funct3E, Funct3M,
input logic IntDivE, W64E,
output logic DivSM,
output logic DivStickyM,
output logic FDivBusyE, IFDivStartE, FDivDoneE,
output logic [`NE+1:0] QeM,
output logic [`DIVb:0] QmM,
@ -94,7 +94,7 @@ module fdivsqrt(
fdivsqrtpostproc fdivsqrtpostproc( // Postprocessor
.clk, .reset, .StallM, .WS, .WC, .D, .FirstU, .FirstUM, .FirstC,
.SqrtE, .Firstun, .SqrtM, .SpecialCaseM,
.QmM, .WZeroE, .DivSM,
.QmM, .WZeroE, .DivStickyM,
// Int-specific
.nM, .mM, .ALTBM, .AsM, .BZeroM, .NegQuotM, .W64M, .RemOpM(Funct3M[1]), .AM,
.FPIntDivResultM);

View File

@ -40,7 +40,7 @@ module fdivsqrtpostproc(
input logic [`DIVBLEN:0] nM, mM,
output logic [`DIVb:0] QmM,
output logic WZeroE,
output logic DivSM,
output logic DivStickyM,
output logic [`XLEN-1:0] FPIntDivResultM
);
@ -86,7 +86,7 @@ module fdivsqrtpostproc(
//////////////////////////
// If the result is not exact, the sticky should be set
assign DivSM = ~WZeroM & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide
assign DivStickyM = ~WZeroM & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide
// Determine if sticky bit is negative // *** look for ways to optimize this. Shift shouldn't be needed.
assign Sum = WC + WS;

View File

@ -29,110 +29,118 @@
module fpu (
input logic clk,
input logic reset,
input logic [2:0] FRM_REGW, // Rounding mode (from CSR)
input logic [31:0] InstrD, // instruction (from IFU)
input logic [`FLEN-1:0] ReadDataW, // Read data (from LSU)
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // Integer input (from IEU)
// Hazards
input logic StallE, StallM, StallW, // stall signals (from HZU)
input logic FlushE, FlushM, FlushW, // flush signals (from HZU)
input logic [4:0] RdE, RdM, RdW, // which FP register to write to (from IEU)
input logic [1:0] STATUS_FS, // Is floating-point enabled? (From privileged unit)
input logic [2:0] Funct3E, Funct3M, // Funct fields of instruction specify type of operations
input logic IntDivE, W64E, //
output logic FRegWriteM, // FP register write enable (to privileged unit)
output logic FpLoadStoreM, // Fp load instruction? (to LSU)
output logic FPUStallD, // Stall the decode stage (To HZU)
output logic FDivBusyE, // Is the divide/sqrt unit busy (stall execute stage) (to HZU)
// CSRs
input logic [1:0] STATUS_FS, // Is floating-point enabled? (From privileged unit)
input logic [2:0] FRM_REGW, // Rounding mode (from CSR)
// Decode stage
input logic [31:0] InstrD, // instruction (from IFU)
// Execute stage
input logic [2:0] Funct3E, // Funct fields of instruction specify type of operations
input logic IntDivE, W64E, // Integer division on FPU
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // Integer input for convert, move, and int div (from IEU)
input logic [4:0] RdE, // which FP register to write to (from IEU)
output logic FWriteIntE, // integer register write enable (to IEU)
output logic FCvtIntE, // Convert to int (to IEU)
// Memory stage
input logic [2:0] Funct3M, // Funct fields of instruction specify type of operations
input logic [4:0] RdM, // which FP register to write to (from IEU)
output logic FRegWriteM, // FP register write enable (to privileged unit)
output logic FpLoadStoreM, // Fp load instruction? (to LSU)
output logic [`FLEN-1:0] FWriteDataM, // Data to be written to memory (to LSU)
output logic [`XLEN-1:0] FIntResM, // data to be written to integer register (to IEU)
output logic [`XLEN-1:0] FCvtIntResW, // convert result to to be written to integer register (to IEU)
output logic FCvtIntW, // select FCvtIntRes (to IEU)
output logic FDivBusyE, // Is the divide/sqrt unit busy (stall execute stage) (to HZU)
output logic IllegalFPUInstrM, // Is the instruction an illegal fpu instruction (to privileged unit)
output logic [4:0] SetFflagsM, // FPU flags (to privileged unit)
output logic [`XLEN-1:0] FPIntDivResultW
// Writeback stage
input logic [4:0] RdW, // which FP register to write to (from IEU)
input logic [`FLEN-1:0] ReadDataW, // Read data (from LSU)
output logic [`XLEN-1:0] FCvtIntResW, // convert result to to be written to integer register (to IEU)
output logic FCvtIntW, // select FCvtIntRes (to IEU)
output logic [`XLEN-1:0] FPIntDivResultW // Result from integer division (to IEU)
);
// FPU specifics:
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
// single stored in a double: | 32 1s | single precision value |
// - sets the underflow after rounding
// RISC-V FPU specifics:
// - multiprecision support uses NAN-boxing, putting 1's in unused msbs
// - RISC-V detects underflow after rounding
// control signals
logic FRegWriteW; // FP register write enable
logic [2:0] FrmM; // FP rounding mode
logic [`FMTBITS-1:0] FmtE, FmtM; // FP precision 0-single 1-double
logic FDivStartE, IDivStartE; // Start division or squareroot
logic FWriteIntM; // Write to integer register
logic [1:0] ForwardXE, ForwardYE, ForwardZE; // forwarding mux control signals
logic [2:0] OpCtrlE, OpCtrlM; // Select which opperation to do in each component
logic [1:0] FResSelE, FResSelM, FResSelW; // Select one of the results that finish in the memory stage
logic [1:0] PostProcSelE, PostProcSelM; // select result in the post processing unit
logic [4:0] Adr1D, Adr2D, Adr3D; // adresses of each input
logic [4:0] Adr1E, Adr2E, Adr3E; // adresses of each input
logic XEnD, YEnD, ZEnD;
logic XEnE, YEnE, ZEnE;
logic FRegWriteE;
logic FRegWriteW; // FP register write enable
logic [2:0] FrmM; // FP rounding mode
logic [`FMTBITS-1:0] FmtE, FmtM; // FP precision 0-single 1-double
logic FDivStartE, IDivStartE; // Start division or squareroot
logic FWriteIntM; // Write to integer register
logic [1:0] ForwardXE, ForwardYE, ForwardZE; // forwarding mux control signals
logic [2:0] OpCtrlE, OpCtrlM; // Select which opperation to do in each component
logic [1:0] FResSelE, FResSelM, FResSelW; // Select one of the results that finish in the memory stage
logic [1:0] PostProcSelE, PostProcSelM; // select result in the post processing unit
logic [4:0] Adr1D, Adr2D, Adr3D; // register adresses of each input
logic [4:0] Adr1E, Adr2E, Adr3E; // register adresses of each input
logic XEnD, YEnD, ZEnD; // X, Y, Z inputs used for current operation
logic XEnE, YEnE, ZEnE; // X, Y, Z inputs used for current operation
logic FRegWriteE; // Write floating-point register
// regfile signals
logic [`FLEN-1:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage
logic [`FLEN-1:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage
logic [`FLEN-1:0] XE; // Input 1 to the various units (after forwarding)
logic [`FLEN-1:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage
logic [`FLEN-1:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage
logic [`FLEN-1:0] XE; // Input 1 to the various units (after forwarding)
logic [`XLEN-1:0] IntSrcXE; // Input 1 to the various units (after forwarding)
logic [`FLEN-1:0] PreYE, YE; // Input 2 to the various units (after forwarding)
logic [`FLEN-1:0] PreZE, ZE; // Input 3 to the various units (after forwarding)
logic [`FLEN-1:0] PreYE, YE; // Input 2 to the various units (after forwarding)
logic [`FLEN-1:0] PreZE, ZE; // Input 3 to the various units (after forwarding)
// unpacking signals
logic XsE, YsE, ZsE; // input's sign - execute stage
logic XsM, YsM; // input's sign - memory stage
logic [`NE-1:0] XeE, YeE, ZeE; // input's exponent - execute stage
logic [`NE-1:0] ZeM; // input's exponent - memory stage
logic [`NF:0] XmE, YmE, ZmE; // input's fraction - execute stage
logic [`NF:0] XmM, YmM, ZmM; // input's fraction - memory stage
logic XNaNE, YNaNE, ZNaNE; // is the input a NaN - execute stage
logic XNaNM, YNaNM, ZNaNM; // is the input a NaN - memory stage
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
logic XSubnormE; // is the input Subnormalized
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
logic XZeroM, YZeroM; // is the input zero - memory stage
logic XInfE, YInfE, ZInfE; // is the input infinity - execute stage
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
logic XExpMaxE; // is the exponent all ones (max value)
logic XsE, YsE, ZsE; // input's sign - execute stage
logic XsM, YsM; // input's sign - memory stage
logic [`NE-1:0] XeE, YeE, ZeE; // input's exponent - execute stage
logic [`NE-1:0] ZeM; // input's exponent - memory stage
logic [`NF:0] XmE, YmE, ZmE; // input's significand - execute stage
logic [`NF:0] XmM, YmM, ZmM; // input's significand - memory stage
logic XNaNE, YNaNE, ZNaNE; // is the input a NaN - execute stage
logic XNaNM, YNaNM, ZNaNM; // is the input a NaN - memory stage
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
logic XSubnormE; // is the input Subnormalized
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
logic XZeroM, YZeroM; // is the input zero - memory stage
logic XInfE, YInfE, ZInfE; // is the input infinity - execute stage
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
logic XExpMaxE; // is the exponent all ones (max value)
// Fma Signals
logic [3*`NF+3:0] SmE, SmM;
logic FmaAStickyE, FmaAStickyM;
logic [`NE+1:0] SeE,SeM;
logic InvAE, InvAM;
logic AsE, AsM;
logic PsE, PsM;
logic SsE, SsM;
logic [$clog2(3*`NF+5)-1:0] SCntE, SCntM;
logic [3*`NF+3:0] SmE, SmM; // Sum significand
logic FmaAStickyE, FmaAStickyM; // FMA addend sticky bit output
logic [`NE+1:0] SeE,SeM; // Sum exponent
logic InvAE, InvAM; // Invert addend
logic AsE, AsM; // Addend sign
logic PsE, PsM; // Product sign
logic SsE, SsM; // Sum sign
logic [$clog2(3*`NF+5)-1:0] SCntE, SCntM; // LZA sum leading zero count
// Cvt Signals
logic [`NE:0] CeE, CeM; // the calculated expoent
logic [`LOGCVTLEN-1:0] CvtShiftAmtE, CvtShiftAmtM; // how much to shift by
logic CvtResSubnormUfE, CvtResSubnormUfM;// does the result underflow or is Subnormalized
logic CsE, CsM; // the result's sign
logic IntZeroE, IntZeroM; // is the integer zero?
logic [`CVTLEN-1:0] CvtLzcInE, CvtLzcInM; // input to the Leading Zero Counter (priority encoder)
logic [`NE:0] CeE, CeM; // convert intermediate expoent
logic [`LOGCVTLEN-1:0] CvtShiftAmtE, CvtShiftAmtM; // how much to shift by
logic CvtResSubnormUfE, CvtResSubnormUfM; // does the result underflow or is Subnormalized
logic CsE, CsM; // convert result sign
logic IntZeroE, IntZeroM; // is the integer zero?
logic [`CVTLEN-1:0] CvtLzcInE, CvtLzcInM; // input to the Leading Zero Counter (priority encoder)
logic [`XLEN-1:0] FCvtIntResM; // fcvt integer result (for IEU)
//divide signals
logic [`DIVb:0] QmM;
logic [`NE+1:0] QeM;
logic DivSM;
logic FDivDoneE, IFDivStartE;
// divide signals
logic [`DIVb:0] QmM; // fdivsqrt signifcand
logic [`NE+1:0] QeM; // fdivsqrt exponent
logic DivStickyM; // fdivsqrt sticky bit
logic FDivDoneE, IFDivStartE; // fdivsqrt control signals
logic [`XLEN-1:0] FPIntDivResultM; // fdivsqrt integer division result (for IEU)
// result and flag signals
logic [`XLEN-1:0] ClassResE; // classify result
logic [`XLEN-1:0] FIntResE; // classify result
logic [`FLEN-1:0] FpResM, FpResW; // classify result
logic [`XLEN-1:0] ClassResE; // classify result
logic [`XLEN-1:0] FIntResE; // classify result
logic [`FLEN-1:0] FpResM, FpResW; // classify result
logic [`FLEN-1:0] PostProcResM; // classify result
logic [4:0] PostProcFlgM; // classify result
logic [`XLEN-1:0] FCvtIntResM;
logic [`FLEN-1:0] CmpFpResE; // compare result
logic [`XLEN-1:0] CmpIntResE; // compare result
logic CmpNVE; // compare invalid flag (Not Valid)
@ -145,7 +153,6 @@ module fpu (
logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
logic [`FLEN-1:0] BoxedOneE; // Zero value for Z for multiplication, with NaN boxing if needed
logic StallUnpackedM;
logic [`XLEN-1:0] FPIntDivResultM;
// DECODE STAGE
@ -260,7 +267,7 @@ module fpu (
fdivsqrt fdivsqrt(.clk, .reset, .FmtE, .XmE, .YmE, .XeE, .YeE, .SqrtE(OpCtrlE[0]), .SqrtM(OpCtrlM[0]),
.XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE, .FDivStartE, .IDivStartE, .XsE,
.ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .IntDivE, .W64E,
.StallM, .FlushE, .DivSM, .FDivBusyE, .IFDivStartE, .FDivDoneE, .QeM,
.StallM, .FlushE, .DivStickyM, .FDivBusyE, .IFDivStartE, .FDivDoneE, .QeM,
.QmM, .FPIntDivResultM /*, .DivDone(DivDoneM) */);
//
@ -371,7 +378,7 @@ module fpu (
.FmaASticky(FmaAStickyM), .XZero(XZeroM), .YZero(YZeroM), .XInf(XInfM), .YInf(YInfM), .DivQm(QmM), .FmaSs(SsM),
.ZInf(ZInfM), .XNaN(XNaNM), .YNaN(YNaNM), .ZNaN(ZNaNM), .XSNaN(XSNaNM), .YSNaN(YSNaNM), .ZSNaN(ZSNaNM), .FmaSm(SmM), .DivQe(QeM), /*.DivDone(DivDoneM), */
.FmaAs(AsM), .FmaPs(PsM), .OpCtrl(OpCtrlM), .FmaSCnt(SCntM), .FmaSe(SeM),
.CvtCe(CeM), .CvtResSubnormUf(CvtResSubnormUfM),.CvtShiftAmt(CvtShiftAmtM), .CvtCs(CsM), .ToInt(FWriteIntM), .DivS(DivSM),
.CvtCe(CeM), .CvtResSubnormUf(CvtResSubnormUfM),.CvtShiftAmt(CvtShiftAmtM), .CvtCs(CsM), .ToInt(FWriteIntM), .DivS(DivStickyM),
.CvtLzcIn(CvtLzcInM), .IntZero(IntZeroM), .PostProcSel(PostProcSelM), .PostProcRes(PostProcResM), .PostProcFlg(PostProcFlgM), .FCvtIntRes(FCvtIntResM));
// FPU flag selection - to privileged