cvw/src/ifu/bpred/bpred.sv

285 lines
15 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
// bpred.sv
//
2023-01-19 21:06:37 +00:00
// Written: Ross Thomposn ross1728@gmail.com
// Created: 12 February 2021
// Modified: 19 January 2023
//
2023-01-19 21:06:37 +00:00
// Purpose: Branch direction prediction and jump/branch target prediction.
// Prediction made during the fetch stage and corrected in the execution stage.
//
2023-01-11 23:15:08 +00:00
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
2023-01-29 21:03:25 +00:00
`define INSTR_CLASS_PRED 1
module bpred (
2023-01-24 14:14:31 +00:00
input logic clk, reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushD, FlushE, FlushM, FlushW,
2023-01-24 13:42:34 +00:00
// Fetch stage
// the prediction
2023-01-24 14:14:31 +00:00
input logic [31:0] InstrD, // Decompressed decode stage instruction. Used to decode instruction class
input logic [`XLEN-1:0] PCNextF, // Next Fetch Address
input logic [`XLEN-1:0] PCPlus2or4F, // PCF+2/4
2023-01-24 13:42:34 +00:00
output logic [`XLEN-1:0] PCNext1F, // Branch Predictor predicted or corrected fetch address on miss prediction
output logic [`XLEN-1:0] NextValidPCE, // Address of next valid instruction after the instruction in the Memory stage
2022-12-20 04:51:55 +00:00
2023-01-24 13:42:34 +00:00
// Update Predictor
2023-01-24 14:14:31 +00:00
input logic [`XLEN-1:0] PCF, // Fetch stage instruction address
input logic [`XLEN-1:0] PCD, // Decode stage instruction address. Also the address the branch predictor took
input logic [`XLEN-1:0] PCE, // Execution stage instruction address
input logic [`XLEN-1:0] PCM, // Memory stage instruction address
2022-12-20 04:51:55 +00:00
input logic [31:0] PostSpillInstrRawF, // Instruction
2023-01-24 13:42:34 +00:00
// Branch and jump outcome
input logic PCSrcE, // Executation stage branch is taken
input logic [`XLEN-1:0] IEUAdrE, // The branch/jump target address
input logic [`XLEN-1:0] PCLinkE, // The address following the branch instruction. (AKA Fall through address)
2023-01-24 13:42:34 +00:00
output logic [3:0] InstrClassM, // The valid instruction class. 1-hot encoded as jalr, ret, jr (not ret), j, br
output logic JumpOrTakenBranchM, // The valid instruction class. 1-hot encoded as jalr, ret, jr (not ret), j, br
2023-01-24 13:42:34 +00:00
// Report branch prediction status
output logic BPPredWrongE, // Prediction is wrong
output logic BPPredWrongM, // Prediction is wrong
2023-01-24 13:42:34 +00:00
output logic DirPredictionWrongM, // Prediction direction is wrong
output logic BTBPredPCWrongM, // Prediction target wrong
output logic RASPredPCWrongM, // RAS prediction is wrong
output logic PredictionInstrClassWrongM // Class prediction is wrong
);
2023-01-25 18:14:18 +00:00
logic PredValidF;
2023-01-05 19:36:51 +00:00
logic [1:0] DirPredictionF;
logic [3:0] BTBPredInstrClassF, PredInstrClassF, PredInstrClassD, PredInstrClassE;
2023-01-25 22:03:02 +00:00
logic [`XLEN-1:0] PredPCF, RASPCF;
2021-10-27 19:43:55 +00:00
logic PredictionPCWrongE;
logic PredictionInstrClassWrongE;
logic [3:0] InstrClassF, InstrClassD, InstrClassE, InstrClassW;
2023-01-05 19:36:51 +00:00
logic DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE;
2021-03-24 02:49:16 +00:00
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF;
2022-12-20 05:16:58 +00:00
logic [`XLEN-1:0] PCNext0F;
2022-12-20 18:58:54 +00:00
logic [`XLEN-1:0] PCCorrectE;
logic [3:0] WrongPredInstrClassD;
logic BTBTargetWrongE;
logic RASTargetWrongE;
logic JumpOrTakenBranchE;
logic [`XLEN-1:0] PredPCD, PredPCE, RASPCD, RASPCE;
// Part 1 branch direction prediction
2022-12-20 18:58:54 +00:00
// look into the 2 port Sram model. something is wrong.
2023-01-29 04:06:12 +00:00
if (`BPRED_TYPE == "BPTWOBIT") begin:Predictor
twoBitPredictor #(`BPRED_SIZE) DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
2023-01-05 19:36:51 +00:00
.PCNextF, .PCM, .DirPredictionF, .DirPredictionWrongE,
2023-01-05 19:27:22 +00:00
.BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]), .PCSrcE);
2021-03-16 20:06:40 +00:00
2023-01-29 04:06:12 +00:00
end else if (`BPRED_TYPE == "BPGLOBAL") begin:Predictor
globalhistory #(`BPRED_SIZE) DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
2023-01-05 19:36:51 +00:00
.PCNextF, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]), .PCSrcE);
2021-03-16 20:06:40 +00:00
2023-01-29 04:06:12 +00:00
end else if (`BPRED_TYPE == "BPSPECULATIVEGLOBAL") begin:Predictor
speculativeglobalhistory #(`BPRED_SIZE) DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
.DirPredictionF, .DirPredictionWrongE,
.BranchInstrF(PredInstrClassF[0]), .BranchInstrD(InstrClassD[0]), .BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]),
2023-01-25 22:03:02 +00:00
.BranchInstrW(InstrClassW[0]), .WrongPredInstrClassD, .PCSrcE);
2023-01-29 04:06:12 +00:00
end else if (`BPRED_TYPE == "BPGSHARE") begin:Predictor
gshare #(`BPRED_SIZE) DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
2023-01-25 23:06:25 +00:00
.PCNextF, .PCE, .DirPredictionF, .DirPredictionWrongE,
2023-01-05 05:51:09 +00:00
.BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]), .PCSrcE);
2023-01-05 20:18:00 +00:00
2023-01-29 04:06:12 +00:00
end else if (`BPRED_TYPE == "BPSPECULATIVEGSHARE") begin:Predictor
speculativegshare #(`BPRED_SIZE) DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
2023-02-01 16:27:58 +00:00
.PCNextF, .PCF, .PCD, .PCE, .DirPredictionF, .DirPredictionWrongE,
2023-01-31 05:55:52 +00:00
.PredInstrClassF, .InstrClassD, .InstrClassE, .WrongPredInstrClassD, .PCSrcE);
2023-01-05 20:18:00 +00:00
2023-01-29 04:06:12 +00:00
end else if (`BPRED_TYPE == "BPLOCALPAg") begin:Predictor
// *** Fix me
/* -----\/----- EXCLUDED -----\/-----
2022-02-01 20:32:27 +00:00
localHistoryPredictor DirPredictor(.clk,
2022-12-11 22:28:11 +00:00
.reset, .StallF, .StallE,
2022-01-05 16:25:08 +00:00
.LookUpPC(PCNextF),
2023-01-05 19:27:22 +00:00
.Prediction(DirPredictionF),
2022-01-05 16:25:08 +00:00
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
2022-02-01 20:32:27 +00:00
.PCSrcE,
.UpdatePrediction(InstrClassE[0]));
-----/\----- EXCLUDED -----/\----- */
2022-01-05 16:25:08 +00:00
end
2021-03-16 20:06:40 +00:00
// this predictor will have two pieces of data,
// 1) A direction (1 = Taken, 0 = Not Taken)
// 2) Any information which is necessary for the predictor to build its next state.
// For a 2 bit table this is the prediction count.
// Part 2 Branch target address prediction
// *** For now the BTB will house the direct and indirect targets
2023-01-25 22:03:02 +00:00
btb TargetPredictor(.clk, .reset, .StallF, .StallD, .StallM, .FlushD, .FlushM,
.PCNextF, .PCF, .PCD, .PCE,
.PredPCF,
.BTBPredInstrClassF,
2023-01-25 18:14:18 +00:00
.PredValidF,
2023-01-25 21:29:55 +00:00
.PredictionInstrClassWrongE,
2023-01-24 22:12:35 +00:00
.IEUAdrE,
2023-02-01 04:03:51 +00:00
.InstrClassD,
2023-01-24 22:12:35 +00:00
.InstrClassE);
2022-02-01 20:32:27 +00:00
// the branch predictor needs a compact decoding of the instruction class.
if (`INSTR_CLASS_PRED == 0) begin : DirectClassDecode
logic [4:0] CompressedOpcF;
logic [3:0] InstrClassF;
logic cjal, cj, cjr, cjalr;
assign CompressedOpcF = {PostSpillInstrRawF[1:0], PostSpillInstrRawF[15:13]};
assign cjal = CompressedOpcF == 5'h09 & `XLEN == 32;
assign cj = CompressedOpcF == 5'h0d;
assign cjr = CompressedOpcF == 5'h14 & ~PostSpillInstrRawF[12] & PostSpillInstrRawF[6:2] == 5'b0 & PostSpillInstrRawF[11:7] != 5'b0;
assign cjalr = CompressedOpcF == 5'h14 & PostSpillInstrRawF[12] & PostSpillInstrRawF[6:2] == 5'b0 & PostSpillInstrRawF[11:7] != 5'b0;
assign InstrClassF[0] = PostSpillInstrRawF[6:0] == 7'h63 |
(`C_SUPPORTED & CompressedOpcF[4:1] == 4'h7);
assign InstrClassF[1] = (PostSpillInstrRawF[6:0] == 7'h67 & (PostSpillInstrRawF[19:15] & 5'h1B) != 5'h01 & (PostSpillInstrRawF[11:7] & 5'h1B) != 5'h01) | // jump register, but not return
(PostSpillInstrRawF[6:0] == 7'h6F & (PostSpillInstrRawF[11:7] & 5'h1B) != 5'h01) | // jump, RD != x1 or x5
(`C_SUPPORTED & (cj | (cjr & ((PostSpillInstrRawF[11:7] & 5'h1B) != 5'h01)) ));
assign InstrClassF[2] = PostSpillInstrRawF[6:0] == 7'h67 & (PostSpillInstrRawF[19:15] & 5'h1B) == 5'h01 | // return must return to ra or r5
(`C_SUPPORTED & (cjalr | cjr) & ((PostSpillInstrRawF[11:7] & 5'h1B) == 5'h01));
assign InstrClassF[3] = ((PostSpillInstrRawF[6:0] & 7'h77) == 7'h67 & (PostSpillInstrRawF[11:07] & 5'h1B) == 5'h01) | // jal(r) must link to ra or x5
2023-01-26 17:07:47 +00:00
(`C_SUPPORTED & (cjal | (cjalr & (PostSpillInstrRawF[11:7] & 5'h1b) == 5'h01)));
assign PredInstrClassF = InstrClassF;
2023-01-26 16:54:43 +00:00
assign SelBPPredF = (PredInstrClassF[0] & DirPredictionF[1]) |
PredInstrClassF[2] |
2023-02-01 16:59:38 +00:00
PredInstrClassF[1] |
PredInstrClassF[3];
end else begin
assign PredInstrClassF = BTBPredInstrClassF;
2023-01-26 16:54:43 +00:00
assign SelBPPredF = (PredInstrClassF[0] & DirPredictionF[1] & PredValidF) |
PredInstrClassF[2] |
2023-02-01 16:59:38 +00:00
(PredInstrClassF[1] & PredValidF) |
(PredInstrClassF[3] & PredValidF);
end
2023-01-31 05:55:52 +00:00
// Part 3 RAS
RASPredictor RASPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
.PredInstrClassF, .InstrClassD, .InstrClassE,
.WrongPredInstrClassD, .RASPCF, .PCLinkE);
assign BPPredPCF = PredInstrClassF[2] ? RASPCF : PredPCF;
assign InstrClassD[3] = (InstrD[6:0] & 7'h77) == 7'h67 & (InstrD[11:07] & 5'h1B) == 5'h01; // jal(r) must link to ra or x5
assign InstrClassD[2] = InstrD[6:0] == 7'h67 & (InstrD[19:15] & 5'h1B) == 5'h01; // return must return to ra or r5
assign InstrClassD[1] = (InstrD[6:0] == 7'h67 & (InstrD[19:15] & 5'h1B) != 5'h01 & (InstrD[11:7] & 5'h1B) != 5'h01) | // jump register, but not return
(InstrD[6:0] == 7'h6F & (InstrD[11:7] & 5'h1B) != 5'h01); // jump, RD != x1 or x5
2022-02-01 20:32:27 +00:00
assign InstrClassD[0] = InstrD[6:0] == 7'h63; // branch
2023-01-31 05:55:52 +00:00
flopenrc #(4) InstrClassRegE(clk, reset, FlushE, ~StallE, InstrClassD, InstrClassE);
flopenrc #(4) InstrClassRegM(clk, reset, FlushM, ~StallM, InstrClassE, InstrClassM);
flopenrc #(4) InstrClassRegW(clk, reset, FlushW, ~StallW, InstrClassM, InstrClassW);
2022-12-23 02:33:38 +00:00
flopenrc #(1) BPPredWrongMReg(clk, reset, FlushM, ~StallM, BPPredWrongE, BPPredWrongM);
flopenrc #(1) JumpOrTakenBranchMReg(clk, reset, FlushM, ~StallM, JumpOrTakenBranchE, JumpOrTakenBranchM);
2022-02-01 20:32:27 +00:00
// branch predictor
2022-12-23 02:33:38 +00:00
flopenrc #(4) BPPredWrongRegM(clk, reset, FlushM, ~StallM,
2023-01-05 23:19:27 +00:00
{DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, PredictionInstrClassWrongE},
{DirPredictionWrongM, BTBPredPCWrongM, RASPredPCWrongM, PredictionInstrClassWrongM});
2022-02-01 20:32:27 +00:00
// pipeline the class
flopenrc #(4) PredInstrClassRegD(clk, reset, FlushD, ~StallD, PredInstrClassF, PredInstrClassD);
flopenrc #(4) PredInstrClassRegE(clk, reset, FlushE, ~StallE, PredInstrClassD, PredInstrClassE);
2022-12-23 02:33:38 +00:00
// Check the prediction
2023-02-07 20:01:59 +00:00
// if it is a CFI then check if the next instruction address (PCD) matches the branch's target or fallthrough address.
// if the class prediction is wrong a regular instruction may have been predicted as a taken branch
// this will result in PCD not being equal to the fall through address PCLinkE (PCE+4).
// The next instruction is always valid as no other flush would occur at the same time as the branch and not
// also flush the branch. This will change in a superscaler cpu.
assign PredictionPCWrongE = PCCorrectE != PCD;
assign BPPredWrongE = PredictionPCWrongE & (|InstrClassE | BPPredClassNonCFIWrongE);
// The branch direction is checked inside each branch predictor, but does not actually matter for
// branch miss prediction recovery. If the class or direction is wrong, but the target is correct
// we an ignore the branch miss-prediction.
// Output the predicted PC or corrected PC on miss-predict.
// Selects the BP or PC+2/4.
mux2 #(`XLEN) pcmux0(PCPlus2or4F, BPPredPCF, SelBPPredF, PCNext0F);
// If the prediction is wrong select the correct address.
mux2 #(`XLEN) pcmux1(PCNext0F, PCCorrectE, BPPredWrongE, PCNext1F);
// Correct branch/jump target.
mux2 #(`XLEN) pccorrectemux(PCLinkE, IEUAdrE, PCSrcE, PCCorrectE);
2023-02-07 20:01:59 +00:00
// If the fence/csrw was predicted as a taken branch then we select PCF, rather PCE.
// Effectively this is PCM+4 or the non-existant PCLinkM
if(`INSTR_CLASS_PRED) mux2 #(`XLEN) pcmuxBPWrongInvalidateFlush(PCE, PCF, BPPredWrongM, NextValidPCE);
else assign NextValidPCE = PCE;
// Finally we need to check if the class is wrong. When the class is wrong the BTB needs to be updated.
// Also we want to track this in a performance counter.
assign PredictionInstrClassWrongE = InstrClassE != PredInstrClassE;
2023-02-07 20:01:59 +00:00
// The remaining checks are used for performance counters.
// If we have a jump, jump register or jal or jalr and the PC is wrong we need to increment the performance counter.
//assign BTBPredPCWrongE = (InstrClassE[3] | InstrClassE[1] | InstrClassE[0]) & PredictionPCWrongE;
//assign BTBPredPCWrongE = TargetWrongE & (InstrClassE[3] | InstrClassE[1] | InstrClassE[0]) & PCSrcE;
assign BTBPredPCWrongE = BTBTargetWrongE;
2023-01-26 00:51:09 +00:00
// similar with RAS. Over counts ras if the class prediction was wrong.
//assign RASPredPCWrongE = TargetWrongE & InstrClassE[2] & PCSrcE;
assign RASPredPCWrongE = RASTargetWrongE;
// Finally if the real instruction class is non CFI but the predictor said it was we need to count.
assign BPPredClassNonCFIWrongE = PredictionInstrClassWrongE & ~|InstrClassE;
// branch class prediction wrong.
assign WrongPredInstrClassD = PredInstrClassD ^ InstrClassD;
2023-01-25 23:06:25 +00:00
// performance counters
// 1. class (class wrong / minstret) (PredictionInstrClassWrongM / csr) // Correct now
2023-01-25 23:06:25 +00:00
// 2. target btb (btb target wrong / class[0,1,3]) (btb target wrong / (br + j + jal)
// 3. target ras (ras target wrong / class[2])
// 4. direction (br dir wrong / class[0])
assign BTBTargetWrongE = (PredPCE != IEUAdrE) & (InstrClassE[0] | InstrClassE[1] | InstrClassE[3]) & PCSrcE;
assign RASTargetWrongE = (RASPCE != IEUAdrE) & InstrClassE[2] & PCSrcE;
assign JumpOrTakenBranchE = (InstrClassE[0] & PCSrcE) | InstrClassE[1] | InstrClassE[3];
flopenrc #(`XLEN) BTBTargetDReg(clk, reset, FlushD, ~StallD, PredPCF, PredPCD);
flopenrc #(`XLEN) BTBTargetEReg(clk, reset, FlushE, ~StallE, PredPCD, PredPCE);
flopenrc #(`XLEN) RASTargetDReg(clk, reset, FlushD, ~StallD, RASPCF, RASPCD);
flopenrc #(`XLEN) RASTargetEReg(clk, reset, FlushE, ~StallE, RASPCD, RASPCE);
2022-12-20 18:58:54 +00:00
endmodule