2022-01-30 23:08:02 +00:00
///////////////////////////////////////////
//
// WALLY-TEST-LIB-64.S
//
// Author: Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
// Created 2021-07-19
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
# include "model_test.h"
# include "arch_test.h"
2022-02-14 02:22:12 +00:00
. macro INIT_TESTS
2022-01-30 23:08:02 +00:00
RVTEST_ISA ( " RV64I " )
. section . text . init
. globl rvtest_entry_point
rvtest_entry_point :
RVMODEL_BOOT
RVTEST_CODE_BEGIN
2022-02-25 22:14:52 +00:00
2022-01-30 23:08:02 +00:00
// ---------------------------------------------------------------------------------------------
// Initialization Overview:
//
// Initialize x6 as a virtual pointer to the test results
// Initialize x16 as a physical pointer to the test results
2022-04-06 06:43:03 +00:00
// Set up stack pointer, mscratch, sscratch
2022-01-30 23:08:02 +00:00
//
// ---------------------------------------------------------------------------------------------
// address for test results
la x6 , test_1_res
la x16 , test_1_res // x16 reserved for the physical address equivalent of x6 to be used in trap handlers
// any time either is used, both must be updated.
2022-04-06 06:43:03 +00:00
// address for normal user stack, mscratch stack, and sscratch stack
la sp , mscratch_top
csrw mscratch , sp
la sp , sscratch_top
csrw sscratch , sp
la sp , stack_top
2022-01-30 23:08:02 +00:00
2022-02-25 22:14:52 +00:00
. endm
2022-03-25 22:57:03 +00:00
// Code to trigger traps goes here so we have consistent mtvals for instruction adresses
// Even if more tests are added.
. macro CAUSE_TRAP_TRIGGERS
j end_trap_triggers
// The following tests involve causing many of the interrupts and exceptions that are easily done in a few lines
// This effectively includes everything that isn't to do with page faults (virtual memory)
2022-04-20 06:47:18 +00:00
//
// INPUTS: a3 (x13): the number of times one of the infinitely looping interrupt causes should loop before giving up and continuing without the interrupt firing.
//
2022-03-25 22:57:03 +00:00
cause_instr_addr_misaligned :
// cause a misaligned address trap
auipc x28 , 0 // get current PC, which is aligned
2022-04-22 22:45:53 +00:00
addi x28 , x28 , 0x2 // add 2 to pc to create misaligned address (Assumes compressed instructions are disabled)
2022-03-25 22:57:03 +00:00
jr x28 // cause instruction address midaligned trap
ret
cause_instr_access :
la x28 , 0x0 // address zero is an address with no memory
2022-04-06 06:43:03 +00:00
sd x1 , - 8 ( sp ) // push the return adress onto the stack
2022-03-25 22:57:03 +00:00
addi sp , sp , - 8
jalr x28 // cause instruction access trap
ld x1 , 0 ( sp ) // pop return adress back from the stack
addi sp , sp , 8
ret
cause_illegal_instr :
2022-04-17 20:56:15 +00:00
. word 0x00000000 // 32 bit zero is an illegal instruction
2022-03-25 22:57:03 +00:00
ret
2022-04-06 06:43:03 +00:00
cause_breakpnt :
2022-03-25 22:57:03 +00:00
ebreak
ret
cause_load_addr_misaligned :
auipc x28 , 0 // get current PC, which is aligned
addi x28 , x28 , 1
lw x29 , 0 ( x28 ) // load from a misaligned address
ret
cause_load_acc :
la x28 , 0 // 0 is an address with no memory
lw x29 , 0 ( x28 ) // load from unimplemented address
ret
cause_store_addr_misaligned :
auipc x28 , 0 // get current PC, which is aligned
addi x28 , x28 , 1
sw x29 , 0 ( x28 ) // store to a misaligned address
ret
cause_store_acc :
la x28 , 0 // 0 is an address with no memory
sw x29 , 0 ( x28 ) // store to unimplemented address
ret
cause_ecall :
// *** ASSUMES you have already gone to the mode you need to call this from.
ecall
ret
2022-04-17 20:56:15 +00:00
cause_m_time_interrupt :
2022-03-25 22:57:03 +00:00
// The following code works for both RV32 and RV64.
// RV64 alone would be easier using double-word adds and stores
2022-04-02 19:17:34 +00:00
li x28 , 0x30 // Desired offset from the present time
2022-04-20 06:47:18 +00:00
mv a3 , x28 // copy value in to know to stop waiting for interrupt after this many cycles
2022-03-25 22:57:03 +00:00
la x29 , 0x02004000 // MTIMECMP register in CLINT
la x30 , 0x0200BFF8 // MTIME register in CLINT
lw x7 , 0 ( x30 ) // low word of MTIME
lw x31 , 4 ( x30 ) // high word of MTIME
add x28 , x7 , x28 // add desired offset to the current time
bgtu x28 , x7 , nowrap // check new time exceeds current time (no wraparound)
addi x31 , x31 , 1 // if wrap, increment most significant word
sw x31 , 4 ( x29 ) // store into most significant word of MTIMECMP
nowrap :
sw x28 , 0 ( x29 ) // store into least significant word of MTIMECMP
2022-04-17 20:56:15 +00:00
time_loop :
2022-04-20 06:47:18 +00:00
//wfi // *** this may now spin us forever in the loop???
addi a3 , a3 , - 1
2022-04-22 22:45:53 +00:00
bnez a3 , time_loop // go through this loop for [a3 value] iterations before returning without performing interrupt
2022-03-25 22:57:03 +00:00
ret
2022-04-17 20:56:15 +00:00
cause_s_time_interrupt :
li x28 , 0x20
csrs mip , x28 // set supervisor time interrupt pending. SIP is a subset of MIP, so writing this should also change MIP.
nop // added extra nops in so the csrs can get through the pipeline before returning.
ret
cause_m_soft_interrupt :
2022-03-25 22:57:03 +00:00
la x28 , 0x02000000 // MSIP register in CLINT
li x29 , 1 // 1 in the lsb
sw x29 , 0 ( x28 ) // Write MSIP bit
ret
2022-04-17 20:56:15 +00:00
cause_s_soft_interrupt :
li x28 , 0x2
csrs sip , x28 // set supervisor software interrupt pending. SIP is a subset of MIP, so writing this should also change MIP.
ret
cause_m_ext_interrupt :
# ========== Configure PLIC ==========
# m priority threshold = 0
2022-04-18 07:22:16 +00:00
li x28 , 0xC200000
li x29 , 0
sw x29 , 0 ( x28 )
2022-04-20 06:47:18 +00:00
# s priority threshold = 7
li x28 , 0xC201000
li x29 , 7
sw x29 , 0 ( x28 )
2022-04-17 20:56:15 +00:00
# source 3 (GPIO) priority = 1
2022-04-18 07:22:16 +00:00
li x28 , 0xC000000
li x29 , 1
sw x29 , 0x0C ( x28 )
# enable source 3 in M Mode
li x28 , 0x0C002000
li x29 , 0 b1000
sw x29 , 0 ( x28 )
2022-04-17 20:56:15 +00:00
2022-03-25 22:57:03 +00:00
li x28 , 0x10060000 // load base GPIO memory location
li x29 , 0x1
2022-04-17 20:56:15 +00:00
sw x29 , 0x08 ( x28 ) // enable the first pin as an output
2022-04-22 22:45:53 +00:00
sw x29 , 0x04 ( x28 ) // enable the first pin as an input as well to cause the interrupt to fire
2022-04-17 20:56:15 +00:00
sw x0 , 0x1C ( x28 ) // clear rise_ip
sw x0 , 0x24 ( x28 ) // clear fall_ip
sw x0 , 0x2C ( x28 ) // clear high_ip
sw x0 , 0x34 ( x28 ) // clear low_ip
2022-04-18 07:22:16 +00:00
sw x29 , 0x28 ( x28 ) // set first pin to interrupt on a rising value
2022-04-17 20:56:15 +00:00
sw x29 , 0x0C ( x28 ) // write a 1 to the first output pin (cause interrupt)
m_ext_loop :
2022-04-20 06:47:18 +00:00
//wfi
addi a3 , a3 , - 1
bnez a3 , m_ext_loop // go through this loop for [a3 value] iterations before returning without performing interrupt
2022-04-17 20:56:15 +00:00
ret
cause_s_ext_interrupt_GPIO :
# ========== Configure PLIC ==========
# s priority threshold = 0
2022-04-18 07:22:16 +00:00
li x28 , 0xC201000
li x29 , 0
sw x29 , 0 ( x28 )
2022-04-17 20:56:15 +00:00
# m priority threshold = 7
2022-04-18 07:22:16 +00:00
li x28 , 0xC200000
li x29 , 7
sw x29 , 0 ( x28 )
2022-04-17 20:56:15 +00:00
# source 3 (GPIO) priority = 1
2022-04-18 07:22:16 +00:00
li x28 , 0xC000000
li x29 , 1
sw x29 , 0x0C ( x28 )
# enable source 3 in S mode
li x28 , 0x0C002080
li x29 , 0 b1000
sw x29 , 0 ( x28 )
2022-04-17 20:56:15 +00:00
li x28 , 0x10060000 // load base GPIO memory location
li x29 , 0x1
sw x29 , 0x08 ( x28 ) // enable the first pin as an output
2022-04-22 22:45:53 +00:00
sw x29 , 0x04 ( x28 ) // enable the first pin as an input as well to cause the interrupt to fire
2022-04-17 20:56:15 +00:00
sw x0 , 0x1C ( x28 ) // clear rise_ip
sw x0 , 0x24 ( x28 ) // clear fall_ip
sw x0 , 0x2C ( x28 ) // clear high_ip
sw x0 , 0x34 ( x28 ) // clear low_ip
2022-04-18 07:22:16 +00:00
sw x29 , 0x28 ( x28 ) // set first pin to interrupt on a rising value
2022-04-17 20:56:15 +00:00
sw x29 , 0x0C ( x28 ) // write a 1 to the first output pin (cause interrupt)
s_ext_loop :
2022-04-20 06:47:18 +00:00
//wfi
addi a3 , a3 , - 1
2022-04-22 22:45:53 +00:00
bnez a3 , s_ext_loop // go through this loop for [a3 value] iterations before returning without performing interrupt
2022-03-25 22:57:03 +00:00
ret
end_trap_triggers :
. endm
2022-03-11 19:09:16 +00:00
. macro TRAP_HANDLER MODE , VECTORED = 1 , DEBUG = 0
// MODE decides which mode this trap handler will be taken in (M or S mode)
2022-04-06 06:43:03 +00:00
// Vectored decides whether interrupts are handled with the vector table at trap_handler_MODE (1)
2022-03-11 19:09:16 +00:00
// vs Using the non-vector approach the rest of the trap handler takes (0)
// DEBUG decides whether we will print mtval a string with status.mpie, status.mie, and status.mpp to the signature (1)
// vs not saving that info to the signature (0)
2022-02-25 22:14:52 +00:00
2022-03-11 19:09:16 +00:00
// Set up the exception Handler, keeping the original handler in x4.
2022-02-25 22:14:52 +00:00
la x1 , trap_handler_ \ MODE \ ( )
2022-04-02 19:17:34 +00:00
ori x1 , x1 , \ VECTORED // set mode field of tvec to VECTORED, which will force vectored interrupts if it's 1.
2022-02-25 22:37:11 +00:00
2022-02-25 22:14:52 +00:00
. if ( \ MODE \ ( ) = = m )
csrrw x4 , \ MODE \ ( ) tvec , x1 // x4 reserved for "default" trap handler address that needs to be restored before halting this test.
. else
csrw \ MODE \ ( ) tvec , x1 // we only neet save the machine trap handler and this if statement ensures it isn't overwritten
. endif
2022-01-30 23:08:02 +00:00
li a0 , 0
li a1 , 0
li a2 , 0 // reset trap handler inputs to zero
2022-04-02 19:17:34 +00:00
la x29 , 0x02004000 // MTIMECMP register in CLINT
li x30 , 0xFFFFFFFF
sd x30 , 0 ( x29 ) // set mtimecmp to 0xFFFFFFFF to really make sure time interrupts don't go off immediately after being enabled
2022-02-25 22:37:11 +00:00
j trap_handler_end_ \ MODE \ ( ) // skip the trap handler when it is being defined.
2022-01-30 23:08:02 +00:00
// ---------------------------------------------------------------------------------------------
// General traps Handler
//
// Handles traps by branching to different behaviors based on mcause.
//
// Note that allowing the exception handler to change mode for a program is a huge security
// hole, but this is an expedient way of writing tests that need different modes
//
// input parameters:
//
// a0 (x10):
// 0: halt program with no failures
// 1: halt program with failure in x11 = a1
// 2: go to machine mode
// 3: go to supervisor mode
// 4: go to user mode
// others: do nothing
//
// a1 (x11):
// VPN for return address after changing privilege mode.
// This should be the base VPN with no offset.
// 0x0 : defaults to next instruction on the same page the trap was called on.
//
// a2 (x12):
// Pagetype of the current address VPN before changing privilge mode
// Used so that we can know how many bits of the adress are the offset.
// Ignored if a1 == 0x0
// 0: Kilopage
// 1: Megapage
// 2: Gigapage
// 3: Terapage
//
// --------------------------------------------------------------------------------------------
2022-04-17 20:56:15 +00:00
. align 3
2022-02-25 22:14:52 +00:00
trap_handler_ \ MODE \ ( ) :
2022-02-25 22:37:11 +00:00
j trap_unvectored_ \ MODE \ ( ) // for the unvectored implimentation: jump past this table of addresses into the actual handler
// *** ASSUMES that a cause value of 0 for an interrupt is unimplemented
// otherwise, a vectored interrupt handler should jump to trap_handler_\MODE\() + 4 * Interrupt cause code
2022-03-11 19:09:16 +00:00
// No matter the value of VECTORED, exceptions (not interrupts) are handled in an unvecotred way
2022-04-06 06:43:03 +00:00
j s_soft_vector_ \ MODE \ ( ) // 1: instruction access fault // the zero spot is taken up by the instruction to skip this table.
2022-03-11 19:09:16 +00:00
j segfault_ \ MODE \ ( ) // 2: reserved
2022-04-06 06:43:03 +00:00
j m_soft_vector_ \ MODE \ ( ) // 3: breakpoint
2022-03-11 19:09:16 +00:00
j segfault_ \ MODE \ ( ) // 4: reserved
2022-04-06 06:43:03 +00:00
j s_time_vector_ \ MODE \ ( ) // 5: load access fault
2022-03-11 19:09:16 +00:00
j segfault_ \ MODE \ ( ) // 6: reserved
2022-04-06 06:43:03 +00:00
j m_time_vector_ \ MODE \ ( ) // 7: store access fault
2022-03-11 19:09:16 +00:00
j segfault_ \ MODE \ ( ) // 8: reserved
2022-04-06 06:43:03 +00:00
j s_ext_vector_ \ MODE \ ( ) // 9: ecall from S-mode
2022-03-11 19:09:16 +00:00
j segfault_ \ MODE \ ( ) // 10: reserved
2022-04-06 06:43:03 +00:00
j m_ext_vector_ \ MODE \ ( ) // 11: ecall from M-mode
2022-02-25 22:37:11 +00:00
// 12 through >=16 are reserved or designated for platform use
trap_unvectored_ \ MODE \ ( ) :
2022-04-06 06:43:03 +00:00
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
// *** NOTE: this means that nested traps will be screwed up but they shouldn't happen in any of these tests
trap_stack_saved_ \ MODE \ ( ) : // jump here after handling vectored interupt since we already switch sp and scratch there
2022-01-30 23:08:02 +00:00
// save registers on stack before using
sd x1 , - 8 ( sp )
2022-04-06 06:43:03 +00:00
sd x5 , - 16 ( sp )
sd x7 , - 24 ( sp )
2022-01-30 23:08:02 +00:00
// Record trap
2022-02-25 22:14:52 +00:00
csrr x1 , \ MODE \ ( ) cause // record the mcause
2022-01-30 23:08:02 +00:00
sd x1 , 0 ( x16 )
addi x6 , x6 , 8
addi x16 , x16 , 8 // update pointers for logging results
2022-03-11 19:09:16 +00:00
. if ( \ DEBUG \ ( ) = = 1 ) // record extra information (MTVAL, some status bits) about traps
csrr x1 , \ MODE \ ( ) tval
sd x1 , 0 ( x16 )
addi x6 , x6 , 8
addi x16 , x16 , 8
csrr x1 , \ MODE \ ( ) status
2022-04-02 19:17:34 +00:00
. if ( \ MODE \ ( ) = = m ) // Taking traps in different modes means we want to get different bits from the status register.
li x5 , 0x1888 // mask bits to select MPP, MPIE, and MIE.
. else
li x5 , 0x122 // mask bits to select SPP, SPIE, and SIE.
. endif
2022-03-11 19:09:16 +00:00
and x5 , x5 , x1
sd x5 , 0 ( x16 ) // store masked out status bits to the output
addi x6 , x6 , 8
addi x16 , x16 , 8
. endif
2022-01-30 23:08:02 +00:00
// Respond to trap based on cause
// All interrupts should return after being logged
2022-03-11 19:09:16 +00:00
csrr x1 , \ MODE \ ( ) cause
2022-01-30 23:08:02 +00:00
li x5 , 0x8000000000000000 // if msb is set, it is an interrupt
and x5 , x5 , x1
2022-04-22 22:45:53 +00:00
bnez x5 , interrupt_handler_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
// Other trap handling is specified in the vector Table
2022-02-25 22:37:11 +00:00
la x5 , exception_vector_table_ \ MODE \ ( )
2022-04-17 20:56:15 +00:00
slli x1 , x1 , 3 // multiply cause by 8 to get offset in vector Table
2022-01-30 23:08:02 +00:00
add x5 , x5 , x1 // compute address of vector in Table
ld x5 , 0 ( x5 ) // fectch address of handler from vector Table
jr x5 // and jump to the handler
2022-04-06 06:43:03 +00:00
interrupt_handler_ \ MODE \ ( ) :
la x5 , interrupt_vector_table_ \ MODE \ ( ) // NOTE THIS IS NOT THE SAME AS VECTORED INTERRUPTS!!!
2022-04-17 20:56:15 +00:00
slli x1 , x1 , 3 // multiply cause by 8 to get offset in vector Table
2022-04-06 06:43:03 +00:00
add x5 , x5 , x1 // compute address of vector in Table
ld x5 , 0 ( x5 ) // fectch address of handler from vector Table
jr x5 // and jump to the handler
2022-02-25 22:14:52 +00:00
segfault_ \ MODE \ ( ) :
2022-04-22 22:45:53 +00:00
ld x7 , - 24 ( sp ) // restore registers from stack before faulting
2022-04-06 06:43:03 +00:00
ld x5 , - 16 ( sp )
2022-01-30 23:08:02 +00:00
ld x1 , - 8 ( sp )
j terminate_test // halt program.
2022-02-25 22:14:52 +00:00
trapreturn_ \ MODE \ ( ) :
2022-04-06 06:43:03 +00:00
csrr x1 , \ MODE \ ( ) epc
addi x1 , x1 , 4 // return to the address AFTER the trapping instruction
2022-01-30 23:08:02 +00:00
2022-02-25 22:14:52 +00:00
trapreturn_specified_ \ MODE \ ( ) :
2022-01-30 23:08:02 +00:00
// reset the necessary pointers and registers (x1, x5, x6, and the return address going to mepc)
2022-04-06 06:43:03 +00:00
// note that we don't need to change x7 since it was a temporary register with no important address in it.
2022-01-30 23:08:02 +00:00
// so that when we return to a new virtual address, they're all in the right spot as well.
2022-02-25 22:14:52 +00:00
beqz a1 , trapreturn_finished_ \ MODE \ ( ) // either update values, of go to default return address.
2022-01-30 23:08:02 +00:00
2022-02-25 22:14:52 +00:00
la x5 , trap_return_pagetype_table_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
slli a2 , a2 , 3
add x5 , x5 , a2
ld a2 , 0 ( x5 ) // a2 = number of offset bits in current page type
li x5 , 1
sll x5 , x5 , a2
addi x5 , x5 , - 1 // x5 = mask bits for offset into current pagetype
2022-04-06 06:43:03 +00:00
// reset the top of the stack, which will be put into ra
2022-01-30 23:08:02 +00:00
ld x7 , - 8 ( sp )
and x7 , x5 , x7 // x7 = offset for x1
add x7 , x7 , a1 // x7 = new address for x1
sd x7 , - 8 ( sp )
2022-04-06 06:43:03 +00:00
// reset the second spot in the stack, which will be put into x5
2022-01-30 23:08:02 +00:00
ld x7 , - 16 ( sp )
and x7 , x5 , x7 // x7 = offset for x5
add x7 , x7 , a1 // x7 = new address for x5
sd x7 , - 16 ( sp )
// reset x6, the pointer for the virtual address of the output of the tests
and x7 , x5 , x6 // x7 = offset for x6
add x6 , x7 , a1 // x6 = new address for the result pointer
2022-04-06 06:43:03 +00:00
// reset x1, which temporarily holds the return address that will be written to mepc.
2022-01-30 23:08:02 +00:00
and x1 , x5 , x1 // x1 = offset for the return address
add x1 , x1 , a1 // x1 = new return address.
li a1 , 0
li a2 , 0 // reset trapreturn inputs to the trap handler
2022-02-25 22:14:52 +00:00
trapreturn_finished_ \ MODE \ ( ) :
2022-04-06 06:43:03 +00:00
csrw \ MODE \ ( ) epc , x1 // update the epc with address of next instruction
ld x7 , - 24 ( sp ) // restore registers from stack before returning
ld x5 , - 16 ( sp )
2022-01-30 23:08:02 +00:00
ld x1 , - 8 ( sp )
2022-04-17 20:56:15 +00:00
csrrw sp , \ MODE \ ( ) scratch , sp // switch sp and scratch stack back to restore the non-trap stack pointer
2022-02-25 22:14:52 +00:00
\ MODE \ ( ) ret // return from trap
2022-01-30 23:08:02 +00:00
2022-04-22 22:45:53 +00:00
// specific exception handlers
2022-02-25 22:14:52 +00:00
ecallhandler_ \ MODE \ ( ) :
2022-01-30 23:08:02 +00:00
// Check input parameter a0. encoding above.
li x5 , 2 // case 2: change to machine mode
2022-02-25 22:14:52 +00:00
beq a0 , x5 , ecallhandler_changetomachinemode_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
li x5 , 3 // case 3: change to supervisor mode
2022-02-25 22:14:52 +00:00
beq a0 , x5 , ecallhandler_changetosupervisormode_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
li x5 , 4 // case 4: change to user mode
2022-02-25 22:14:52 +00:00
beq a0 , x5 , ecallhandler_changetousermode_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
// unsupported ecalls should segfault
2022-02-25 22:14:52 +00:00
j segfault_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
2022-02-25 22:14:52 +00:00
ecallhandler_changetomachinemode_ \ MODE \ ( ) :
// Force status.MPP (bits 12:11) to 11 to enter machine mode after mret
2022-04-20 06:47:18 +00:00
// note that it is impossible to return to M mode after a trap delegated to S mode
2022-01-30 23:08:02 +00:00
li x1 , 0 b1100000000000
2022-02-25 22:14:52 +00:00
csrs \ MODE \ ( ) status , x1
2022-04-22 22:45:53 +00:00
j trapreturn_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
2022-02-25 22:14:52 +00:00
ecallhandler_changetosupervisormode_ \ MODE \ ( ) :
2022-04-20 06:47:18 +00:00
// Force status.MPP (bits 12:11) and status.SPP (bit 8) to 01 to enter supervisor mode after (m/s)ret
2022-04-17 20:56:15 +00:00
li x1 , 0 b1000000000000
2022-02-25 22:14:52 +00:00
csrc \ MODE \ ( ) status , x1
2022-04-20 06:47:18 +00:00
li x1 , 0 b0100100000000
2022-02-25 22:14:52 +00:00
csrs \ MODE \ ( ) status , x1
j trapreturn_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
2022-02-25 22:14:52 +00:00
ecallhandler_changetousermode_ \ MODE \ ( ) :
2022-04-20 06:47:18 +00:00
// Force status.MPP (bits 12:11) and status.SPP (bit 8) to 00 to enter user mode after (m/s)ret
li x1 , 0 b1100100000000
2022-04-02 19:17:34 +00:00
csrc \ MODE \ ( ) status , x1
2022-02-25 22:14:52 +00:00
j trapreturn_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
2022-03-11 19:09:16 +00:00
instrpagefault_ \ MODE \ ( ) :
2022-04-06 06:43:03 +00:00
ld x1 , - 8 ( sp ) // load return address from stack into ra (the address AFTER the jal to the faulting address)
2022-02-25 22:14:52 +00:00
j trapreturn_finished_ \ MODE \ ( ) // puts x1 into mepc, restores stack and returns to program (outside of faulting page)
2022-01-30 23:08:02 +00:00
2022-03-11 19:09:16 +00:00
instrfault_ \ MODE \ ( ) :
2022-04-06 06:43:03 +00:00
ld x1 , - 8 ( sp ) // load return address from stack into ra (the address AFTER the jal to the faulting address)
j trapreturn_finished_ \ MODE \ ( ) // return to the code at ra value from before trap
2022-03-11 19:09:16 +00:00
2022-02-25 22:14:52 +00:00
illegalinstr_ \ MODE \ ( ) :
j trapreturn_ \ MODE \ ( ) // return to the code after recording the mcause
2022-02-14 02:22:12 +00:00
2022-02-25 22:14:52 +00:00
accessfault_ \ MODE \ ( ) :
j trapreturn_ \ MODE \ ( )
2022-01-30 23:08:02 +00:00
2022-03-11 19:09:16 +00:00
addr_misaligned_ \ MODE \ ( ) :
2022-02-25 22:37:11 +00:00
j trapreturn_ \ MODE \ ( )
2022-03-11 19:09:16 +00:00
breakpt_ \ MODE \ ( ) :
2022-02-25 22:37:11 +00:00
j trapreturn_ \ MODE \ ( )
2022-04-22 22:45:53 +00:00
// Vectored interrupt handlers: record the fact that the handler went to the correct vector and then continue to handling
// note: does not mess up any registers, saves and restores them to the stack instead.
2022-04-06 06:43:03 +00:00
s_soft_vector_ \ MODE \ ( ) :
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
sd x5 , - 8 ( sp ) // put x5 on the scratch stack before messing with it
li x5 , 0x7EC01 // write 0x7ec01 (for "VEC"tored and 01 for the interrupt code)
j vectored_int_end_ \ MODE \ ( )
m_soft_vector_ \ MODE \ ( ) :
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
sd x5 , - 8 ( sp ) // put x5 on the scratch stack before messing with it
li x5 , 0x7EC03 // write 0x7ec03 (for "VEC"tored and 03 for the interrupt code)
j vectored_int_end_ \ MODE \ ( )
s_time_vector_ \ MODE \ ( ) :
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
sd x5 , - 8 ( sp ) // put x5 on the scratch stack before messing with it
li x5 , 0x7EC05 // write 0x7ec05 (for "VEC"tored and 05 for the interrupt code)
j vectored_int_end_ \ MODE \ ( )
m_time_vector_ \ MODE \ ( ) :
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
sd x5 , - 8 ( sp ) // put x5 on the scratch stack before messing with it
li x5 , 0x7EC07 // write 0x7ec07 (for "VEC"tored and 07 for the interrupt code)
j vectored_int_end_ \ MODE \ ( )
s_ext_vector_ \ MODE \ ( ) :
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
sd x5 , - 8 ( sp ) // put x5 on the scratch stack before messing with it
li x5 , 0x7EC09 // write 0x7ec09 (for "VEC"tored and 08 for the interrupt code)
j vectored_int_end_ \ MODE \ ( )
m_ext_vector_ \ MODE \ ( ) :
csrrw sp , \ MODE \ ( ) scratch , sp // swap sp and scratch so we can use the scratch stack in the trap hanler without messing up sp's value or the stack itself.
sd x5 , - 8 ( sp ) // put x5 on the scratch stack before messing with it
li x5 , 0x7EC0B // write 0x7ec0B (for "VEC"tored and 0B for the interrupt code)
j vectored_int_end_ \ MODE \ ( )
vectored_int_end_ \ MODE \ ( ) :
sd x5 , 0 ( x16 ) // store to signature to show vectored interrupts succeeded.
2022-03-11 19:09:16 +00:00
addi x6 , x6 , 8
addi x16 , x16 , 8
2022-04-06 06:43:03 +00:00
ld x5 , - 8 ( sp ) // restore x5 before continuing to handle trap in case its needed.
j trap_stack_saved_ \ MODE \ ( )
2022-04-22 22:45:53 +00:00
// specific interrupt handlers
2022-04-06 06:43:03 +00:00
soft_interrupt_ \ MODE \ ( ) :
2022-04-17 20:56:15 +00:00
la x5 , 0x02000000 // Reset by clearing MSIP interrupt from CLINT
sw x0 , 0 ( x5 )
2022-04-18 07:22:16 +00:00
csrci \ MODE \ ( ) ip , 0x2 // clear supervisor software interrupt pending bit
2022-04-17 20:56:15 +00:00
ld x1 , - 8 ( sp ) // load return address from stack into ra (the address to return to after causing this interrupt)
// Note: we do this because the mepc loads in the address of the instruction after the sw that causes the interrupt
// This means that this trap handler will return to the next address after that one, which might be unpredictable behavior.
j trapreturn_finished_ \ MODE \ ( ) // return to the code at ra value from before trap
2022-04-02 19:17:34 +00:00
time_interrupt_ \ MODE \ ( ) :
2022-04-17 20:56:15 +00:00
la x5 , 0x02004000 // MTIMECMP register in CLINT
li x7 , 0xFFFFFFFF
sd x7 , 0 ( x5 ) // reset interrupt by setting mtimecmp to 0xFFFFFFFF
2022-04-06 06:43:03 +00:00
2022-04-18 07:22:16 +00:00
li x5 , 0x20
csrc \ MODE \ ( ) ip , x5
2022-04-17 20:56:15 +00:00
ld x1 , - 8 ( sp ) // load return address from stack into ra (the address to return to after the loop is complete)
2022-04-06 06:43:03 +00:00
j trapreturn_finished_ \ MODE \ ( ) // return to the code at ra value from before trap
2022-02-25 22:37:11 +00:00
2022-04-02 19:17:34 +00:00
ext_interrupt_ \ MODE \ ( ) :
2022-03-11 19:09:16 +00:00
li x28 , 0x10060000 // reset interrupt by clearing all the GPIO bits
sw x0 , 8 ( x28 ) // disable the first pin as an output
sw x0 , 40 ( x28 ) // write a 0 to the first output pin (reset interrupt)
2022-04-17 20:56:15 +00:00
# reset PLIC to turn off external interrupts
2022-04-20 06:47:18 +00:00
# m priority threshold = 7
2022-04-18 07:22:16 +00:00
li x28 , 0xC200000
li x5 , 0x7
sw x5 , 0 ( x28 )
2022-04-20 06:47:18 +00:00
# s priority threshold = 7
li x28 , 0xC201000
li x5 , 0x7
sw x5 , 0 ( x28 )
2022-04-17 20:56:15 +00:00
# source 3 (GPIO) priority = 0
2022-04-18 07:22:16 +00:00
li x28 , 0xC000000
li x5 , 0
sw x5 , 0x0C ( x28 )
2022-04-20 06:47:18 +00:00
# disable source 3 in M mode
2022-04-18 07:22:16 +00:00
li x28 , 0x0C002000
li x5 , 0 b0000
sw x5 , 0 ( x28 )
2022-04-20 06:47:18 +00:00
# enable source 3 in S mode
li x28 , 0x0C002080
li x29 , 0 b0000
sw x29 , 0 ( x28 )
2022-04-18 07:22:16 +00:00
li x5 , 0x200
csrc \ MODE \ ( ) ip , x5
ld x1 , - 8 ( sp ) // load return address from stack into ra (the address to return to after the loop is complete)
j trapreturn_finished_ \ MODE \ ( ) // return to the code at ra value from before trap
2022-01-30 23:08:02 +00:00
// Table of trap behavior
// lists what to do on each exception (not interrupts)
// unexpected exceptions should cause segfaults for easy detection
// Expected exceptions should increment the EPC to the next instruction and return
. align 3 // aligns this data table to an 8 byte boundary
2022-02-25 22:37:11 +00:00
exception_vector_table_ \ MODE \ ( ) :
2022-03-11 19:09:16 +00:00
.8 byte addr_misaligned_ \ MODE \ ( ) // 0: instruction address misaligned
2022-02-25 22:14:52 +00:00
.8 byte instrfault_ \ MODE \ ( ) // 1: instruction access fault
.8 byte illegalinstr_ \ MODE \ ( ) // 2: illegal instruction
2022-03-11 19:09:16 +00:00
.8 byte breakpt_ \ MODE \ ( ) // 3: breakpoint
.8 byte addr_misaligned_ \ MODE \ ( ) // 4: load address misaligned
2022-02-25 22:14:52 +00:00
.8 byte accessfault_ \ MODE \ ( ) // 5: load access fault
2022-03-11 19:09:16 +00:00
.8 byte addr_misaligned_ \ MODE \ ( ) // 6: store address misaligned
2022-02-25 22:14:52 +00:00
.8 byte accessfault_ \ MODE \ ( ) // 7: store access fault
.8 byte ecallhandler_ \ MODE \ ( ) // 8: ecall from U-mode
.8 byte ecallhandler_ \ MODE \ ( ) // 9: ecall from S-mode
.8 byte segfault_ \ MODE \ ( ) // 10: reserved
.8 byte ecallhandler_ \ MODE \ ( ) // 11: ecall from M-mode
2022-03-11 19:09:16 +00:00
.8 byte instrpagefault_ \ MODE \ ( ) // 12: instruction page fault
2022-02-25 22:14:52 +00:00
.8 byte trapreturn_ \ MODE \ ( ) // 13: load page fault
.8 byte segfault_ \ MODE \ ( ) // 14: reserved
.8 byte trapreturn_ \ MODE \ ( ) // 15: store page fault
2022-01-30 23:08:02 +00:00
2022-04-06 06:43:03 +00:00
. align 3 // aligns this data table to an 8 byte boundary
interrupt_vector_table_ \ MODE \ ( ) :
.8 byte segfault_ \ MODE \ ( ) // 0: reserved
2022-04-17 20:56:15 +00:00
.8 byte soft_interrupt_ \ MODE \ ( ) // 1: instruction access fault // the zero spot is taken up by the instruction to skip this table.
2022-04-06 06:43:03 +00:00
.8 byte segfault_ \ MODE \ ( ) // 2: reserved
2022-04-17 20:56:15 +00:00
.8 byte soft_interrupt_ \ MODE \ ( ) // 3: breakpoint
2022-04-06 06:43:03 +00:00
.8 byte segfault_ \ MODE \ ( ) // 4: reserved
2022-04-17 20:56:15 +00:00
.8 byte time_interrupt_ \ MODE \ ( ) // 5: load access fault
2022-04-06 06:43:03 +00:00
.8 byte segfault_ \ MODE \ ( ) // 6: reserved
2022-04-17 20:56:15 +00:00
.8 byte time_interrupt_ \ MODE \ ( ) // 7: store access fault
2022-04-06 06:43:03 +00:00
.8 byte segfault_ \ MODE \ ( ) // 8: reserved
2022-04-17 20:56:15 +00:00
.8 byte ext_interrupt_ \ MODE \ ( ) // 9: ecall from S-mode
2022-04-06 06:43:03 +00:00
.8 byte segfault_ \ MODE \ ( ) // 10: reserved
2022-04-17 20:56:15 +00:00
.8 byte ext_interrupt_ \ MODE \ ( ) // 11: ecall from M-mode
2022-04-06 06:43:03 +00:00
2022-01-30 23:08:02 +00:00
. align 3
2022-02-25 22:14:52 +00:00
trap_return_pagetype_table_ \ MODE \ ( ) :
2022-01-30 23:08:02 +00:00
.8 byte 0xC // 0: kilopage has 12 offset bits
.8 byte 0x15 // 1: megapage has 21 offset bits
.8 byte 0x1E // 2: gigapage has 30 offset bits
.8 byte 0x27 // 3: terapage has 39 offset bits
2022-02-25 22:14:52 +00:00
trap_handler_end_ \ MODE \ ( ) : // place to jump to so we can skip the trap handler and continue with the test
2022-02-14 02:22:12 +00:00
. endm
// Test Summary table!
// Test Name : Description : Fault output value : Normal output values
// ---------------------:-------------------------------------------:-------------------------------------------:------------------------------------------------------
// write64_test : Write 64 bits to address : 0x6, 0x7, or 0xf : None
// write32_test : Write 32 bits to address : 0x6, 0x7, or 0xf : None
// write16_test : Write 16 bits to address : 0x6, 0x7, or 0xf : None
// write08_test : Write 8 bits to address : 0x6, 0x7, or 0xf : None
// read64_test : Read 64 bits from address : 0x4, 0x5, or 0xd, then 0xbad : readvalue in hex
2022-02-15 20:15:09 +00:00
// read32_test : Read 32 bits from address : 0x4, 0x5, or 0xd, then 0xbad : readvalue in hex
// read16_test : Read 16 bits from address : 0x4, 0x5, or 0xd, then 0xbad : readvalue in hex
// read08_test : Read 8 bits from address : 0x4, 0x5, or 0xd, then 0xbad : readvalue in hex
2022-02-14 02:22:12 +00:00
// executable_test : test executable on virtual page : 0x0, 0x1, or 0xc, then 0xbad : value of x7 modified by exectuion code (usually 0x111)
// terminate_test : terminate tests : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_baremetal : satp.MODE = bare metal : None : None
// goto_sv39 : satp.MODE = sv39 : None : None
// goto_sv48 : satp.MODE = sv48 : None : None
// goto_m_mode : go to mahcine mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_s_mode : go to supervisor mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_u_mode : go to user mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// write_read_csr : write to specified CSR : old CSR value, 0x2, depending on perms : value written to CSR
// csr_r_access : test read-only permissions on CSR : 0xbad : 0x2, then 0x11
// *** TESTS TO ADD: execute inline, read unknown value out, read CSR unknown value, just read CSR value
. macro WRITE64 ADDR VAL
// attempt to write VAL to ADDR
// Success outputs:
// None
// Fault outputs:
// 0x6: misaligned address
// 0x7: access fault
// 0xf: page fault
li x29 , \ VAL
li x30 , \ ADDR
sd x29 , 0 ( x30 )
. endm
. macro WRITE32 ADDR VAL
// all write tests have the same description/outputs as write64
li x29 , \ VAL
li x30 , \ ADDR
sw x29 , 0 ( x30 )
. endm
. macro WRITE16 ADDR VAL
// all write tests have the same description/outputs as write64
li x29 , \ VAL
li x30 , \ ADDR
sh x29 , 0 ( x30 )
. endm
. macro WRITE08 ADDR VAL
// all write tests have the same description/outputs as write64
li x29 , \ VAL
li x30 , \ ADDR
sb x29 , 0 ( x30 )
. endm
. macro READ64 ADDR
// Attempt read at ADDR. Write the value read out to the output *** Consider adding specific test for reading a non known value
// Success outputs:
// value read out from ADDR
// Fault outputs:
// One of the following followed by 0xBAD
// 0x4: misaligned address
// 0x5: access fault
// 0xD: page fault
li x7 , 0xBAD // bad value that will be overwritten on good reads.
li x29 , \ ADDR
ld x7 , 0 ( x29 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
. macro READ32 ADDR
// All reads have the same description/outputs as read64.
// They will store the sign extended value of what was read out at ADDR
li x7 , 0xBAD // bad value that will be overwritten on good reads.
li x29 , \ ADDR
lw x7 , 0 ( x29 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
. macro READ16 ADDR
// All reads have the same description/outputs as read64.
// They will store the sign extended value of what was read out at ADDR
li x7 , 0xBAD // bad value that will be overwritten on good reads.
li x29 , \ ADDR
lh x7 , 0 ( x29 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
. macro READ08 ADDR
// All reads have the same description/outputs as read64.
// They will store the sign extended value of what was read out at ADDR
li x7 , 0xBAD // bad value that will be overwritten on good reads.
li x29 , \ ADDR
lb x7 , 0 ( x29 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
// These goto_x_mode tests all involve invoking the trap handler,
// So their outputs are inevitably:
// 0x8: test called from U mode
// 0x9: test called from S mode
// 0xB: test called from M mode
// they generally do not fault or cause issues as long as these modes are enabled
// *** add functionality to check if modes are enabled before jumping? maybe cause a fault if not?
2022-03-11 19:09:16 +00:00
. macro GOTO_M_MODE RETURN_VPN = 0x0 RETURN_PAGETYPE = 0x0
2022-02-14 02:22:12 +00:00
li a0 , 2 // determine trap handler behavior (go to machine mode)
li a1 , \ RETURN_VPN // return VPN
li a2 , \ RETURN_PAGETYPE // return page types
ecall // writes mcause to the output.
// now in S mode
. endm
2022-03-11 19:09:16 +00:00
. macro GOTO_S_MODE RETURN_VPN = 0x0 RETURN_PAGETYPE = 0x0
2022-02-14 02:22:12 +00:00
li a0 , 3 // determine trap handler behavior (go to supervisor mode)
li a1 , \ RETURN_VPN // return VPN
li a2 , \ RETURN_PAGETYPE // return page types
ecall // writes mcause to the output.
// now in S mode
. endm
2022-03-11 19:09:16 +00:00
. macro GOTO_U_MODE RETURN_VPN = 0x0 RETURN_PAGETYPE = 0x0
2022-02-14 02:22:12 +00:00
li a0 , 4 // determine trap handler behavior (go to user mode)
li a1 , \ RETURN_VPN // return VPN
li a2 , \ RETURN_PAGETYPE // return page types
ecall // writes mcause to the output.
// now in S mode
. endm
// These tests change virtual memory settings, turning it on/off and changing between types.
// They don't have outputs as any error with turning on virtual memory should reveal itself in the tests *** Consider changing this policy?
. macro GOTO_BAREMETAL
// Turn translation off
li x7 , 0 // satp.MODE value for bare metal (0)
slli x7 , x7 , 60
csrw satp , x7
. endm
2022-02-27 23:28:25 +00:00
. macro GOTO_SV39 ASID BASE_PPN
2022-02-14 02:22:12 +00:00
// Turn on sv39 virtual memory
li x7 , 8 // satp.MODE value for Sv39 (8)
slli x7 , x7 , 60
2022-02-27 23:28:25 +00:00
li x29 , \ ASID
slli x29 , x29 , 44
or x7 , x7 , x29 // put ASID into the correct field of SATP
li x28 , \ BASE_PPN // Base Pagetable physical page number, satp.PPN field.
2022-02-14 02:22:12 +00:00
add x7 , x7 , x28
csrw satp , x7
. endm
2022-02-27 23:28:25 +00:00
. macro GOTO_SV48 ASID BASE_PPN
2022-02-14 02:22:12 +00:00
// Turn on sv48 virtual memory
li x7 , 9 // satp.MODE value for Sv39 (8)
slli x7 , x7 , 60
2022-02-27 23:28:25 +00:00
li x29 , \ ASID
slli x29 , x29 , 44
or x7 , x7 , x29 // put ASID into the correct field of SATP
li x28 , \ BASE_PPN // Base Pagetable physical page number, satp.PPN field.
2022-02-14 02:22:12 +00:00
add x7 , x7 , x28
csrw satp , x7
. endm
. macro WRITE_READ_CSR CSR VAL
// attempt to write CSR with VAL. Note: this also tests read access to CSR
// Success outputs:
// value read back out from CSR after writing
// Fault outputs:
// The previous CSR value before write attempt
// *** Most likely 0x2, the mcause for illegal instruction if we don't have write or read access
li x30 , 0xbad // load bad value to be overwritten by csrr
2022-03-25 22:57:03 +00:00
li x29 , \ VAL \ ( )
2022-02-14 02:22:12 +00:00
csrw \ CSR \ ( ) , x29
csrr x30 , \ CSR
sd x30 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
. macro CSR_R_ACCESS CSR
// verify that a csr is accessible to read but not to write
// Success outputs:
// 0x2, then
// 0x11 *** consider changing to something more meaningful
// Fault outputs:
// 0xBAD *** consider changing this one as well. in general, do we need the branching if it hould cause an illegal instruction fault?
csrr x29 , \ CSR
csrwi \ CSR \ ( ) , 0xA // Attempt to write a 'random' value to the CSR
csrr x30 , \ CSR
bne x30 , x29 , 1f // 1f represents write_access
li x30 , 0x11 // Write failed, confirming read only permissions.
j 2f // j r_access_end
1 : // w_access (write succeeded, violating read-only)
li x30 , 0xBAD
2 : // r_access end
sd x30 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
. macro EXECUTE_AT_ADDRESS ADDR
// Execute the code already written to ADDR, returning the value in x7.
// *** Note: this test itself doesn't write the code to ADDR because it might be callled at a point where we dont have write access to ADDR
// Assumes the code modifies x7, usually to become 0x111.
// Sample code: 0x11100393 (li x7, 0x111), 0x00008067 (ret)
// Success outputs:
// modified value of x7. (0x111 if you use the sample code)
// Fault outputs:
// One of the following followed by 0xBAD
// 0x0: misaligned address
// 0x1: access fault
// 0xC: page fault
fence . i // forces caches and main memory to sync so execution code written to ADDR can run.
li x7 , 0xBAD
li x28 , \ ADDR
jalr x28 // jump to executable test code
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
. endm
. macro END_TESTS
// invokes one final ecall to return to machine mode then terminates this program, so the output is
// 0x8: termination called from U mode
// 0x9: termination called from S mode
// 0xB: termination called from M mode
j terminate_test
. endm
2022-01-30 23:08:02 +00:00
// ---------------------------------------------------------------------------------------------
// Test Handler
//
// This test handler works in a similar wy to the trap handler. It takes in a few things by reading from a table in memory
// (see test_cases) and performing certain behavior based on them.
//
// Input parameters:
//
// x28:
2022-02-14 05:30:00 +00:00
// Address input for the test taking place (think: address to read/write, new address to return to, etc...)
2022-01-30 23:08:02 +00:00
//
// x29:
2022-02-14 05:30:00 +00:00
// Value input for the test taking place (think: value to write, any other extra info needed)
2022-01-30 23:08:02 +00:00
//
// x30:
2022-02-14 05:30:00 +00:00
// Label for the location of the test that's about to take place
2022-01-30 23:08:02 +00:00
// ------------------------------------------------------------------------------------------------------------------------------------
2022-02-14 02:22:12 +00:00
. macro INIT_TEST_TABLE // *** Consider renaming this test. to what???
test_loop_setup :
2022-01-30 23:08:02 +00:00
la x5 , test_cases
test_loop :
ld x28 , 0 ( x5 ) // fetch test case address
ld x29 , 8 ( x5 ) // fetch test case value
ld x30 , 16 ( x5 ) // fetch test case flag
addi x5 , x5 , 24 // set x5 to next test case
// x5 has the symbol for a test's location in the assembly
li x7 , 0x1FFFFF
and x30 , x30 , x7 // This program is always on at least a megapage, so this masks out the megapage offset.
auipc x7 , 0x0
srli x7 , x7 , 21
slli x7 , x7 , 21 // zero out the bottom 21 bits so the megapage offset of the symbol can be placed there
or x30 , x7 , x30 // x30 = virtual address of the symbol for this type of test.
jr x30
// Test Name : Description : Fault output value : Normal output values
// ----------------------:-------------------------------------------:------------------------:------------------------------------------------------
// write64_test : Write 64 bits to address : 0xf : None
// write32_test : Write 32 bits to address : 0xf : None
// write16_test : Write 16 bits to address : 0xf : None
// write08_test : Write 8 bits to address : 0xf : None
// read64_test : Read 64 bits from address : 0xd, 0xbad : readvalue in hex
// read32_test : Read 32 bitsfrom address : 0xd, 0xbad : readvalue in hex
// read16_test : Read 16 bitsfrom address : 0xd, 0xbad : readvalue in hex
// read08_test : Read 8 bitsfrom address : 0xd, 0xbad : readvalue in hex
// executable_test : test executable on virtual page : 0xc, 0xbad : value of x7 modified by exectuion code (usually 0x111)
// terminate_test : terminate tests : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_baremetal : satp.MODE = bare metal : None : None
// goto_sv39 : satp.MODE = sv39 : None : None
// goto_sv48 : satp.MODE = sv48 : None : None
// write_mxr_sum : write sstatus.[19:18] = MXR, SUM bits : None : None
// goto_m_mode : go to mahcine mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_s_mode : go to supervisor mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_u_mode : go to user mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// write_pmpcfg_x : Write one of the pmpcfg csr's : mstatuses?, 0xD : readback of pmpcfg value
// write_pmpaddr_x : Write one of the pmpaddr csr's : None : readback of pmpaddr value
write64_test :
// address to write in x28, double value in x29
sd x29 , 0 ( x28 )
j test_loop // go to next test case
write32_test :
// address to write in x28, word value in x29
sw x29 , 0 ( x28 )
j test_loop // go to next test case
write16_test :
// address to write in x28, halfword value in x29
sh x29 , 0 ( x28 )
j test_loop // go to next test case
write08_test :
// address to write in x28, value in x29
sb x29 , 0 ( x28 )
j test_loop // go to next test case
read64_test :
// address to read in x28, expected 64 bit value in x29 (unused, but there for your perusal).
li x7 , 0xBAD // bad value that will be overwritten on good reads.
ld x7 , 0 ( x28 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop // go to next test case
read32_test :
// address to read in x28, expected 32 bit value in x29 (unused, but there for your perusal).
li x7 , 0xBAD // bad value that will be overwritten on good reads.
lw x7 , 0 ( x28 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop // go to next test case
read16_test :
// address to read in x28, expected 16 bit value in x29 (unused, but there for your perusal).
li x7 , 0xBAD // bad value that will be overwritten on good reads.
lh x7 , 0 ( x28 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop // go to next test case
read08_test :
// address to read in x28, expected 8 bit value in x29 (unused, but there for your perusal).
li x7 , 0xBAD // bad value that will be overwritten on good reads.
lb x7 , 0 ( x28 )
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop // go to next test case
goto_s_mode :
// return to address in x28,
li a0 , 3 // Trap handler behavior (go to supervisor mode)
mv a1 , x28 // return VPN
mv a2 , x29 // return page types
ecall // writes mcause to the output.
// now in S mode
j test_loop
goto_m_mode :
li a0 , 2 // Trap handler behavior (go to machine mode)
mv a1 , x28 // return VPN
mv a2 , x29 // return page types
ecall // writes mcause to the output.
j test_loop
goto_u_mode :
li a0 , 4 // Trap handler behavior (go to user mode)
mv a1 , x28 // return VPN
mv a2 , x29 // return page types
ecall // writes mcause to the output.
j test_loop
goto_baremetal :
// Turn translation off
2022-02-14 05:30:00 +00:00
GOTO_BAREMETAL
2022-01-30 23:08:02 +00:00
j test_loop // go to next test case
goto_sv39 :
2022-02-27 23:28:25 +00:00
// Turn sv39 translation on
// Base PPN in x28, ASID in x29
li x7 , 8 // satp.MODE value for sv39 (8)
slli x7 , x7 , 60
slli x29 , x29 , 44
or x7 , x7 , x29 // put ASID into the correct field of SATP
or x7 , x7 , x28 // Base Pagetable physical page number, satp.PPN field.
csrw satp , x7
2022-01-30 23:08:02 +00:00
j test_loop // go to next test case
goto_sv48 :
2022-02-27 23:28:25 +00:00
// Turn sv48 translation on
// Base PPN in x28, ASID in x29
li x7 , 9 // satp.MODE value for sv48 (9)
slli x7 , x7 , 60
slli x29 , x29 , 44
or x7 , x7 , x29 // put ASID into the correct field of SATP
or x7 , x7 , x28 // Base Pagetable physical page number, satp.PPN field.
csrw satp , x7
2022-01-30 23:08:02 +00:00
j test_loop // go to next test case
write_mxr_sum :
2022-02-27 23:28:25 +00:00
// writes sstatus.[mxr, sum] with the (assumed to be) 2 bit value in x29. also assumes we're in S or M mode
2022-01-30 23:08:02 +00:00
li x30 , 0xC0000 // mask bits for MXR, SUM
not x7 , x29
slli x7 , x7 , 18
and x7 , x7 , x30
slli x29 , x29 , 18
csrc sstatus , x7
csrs sstatus , x29
j test_loop
2022-02-27 23:28:25 +00:00
read_write_mprv :
// reads old mstatus.mprv value to output, then
// Writes mstatus.mprv with the 1 bit value in x29. assumes we're in m mode
li x30 , 0x20000 // mask bits for mprv
csrr x7 , mstatus
and x7 , x7 , x30
srli x7 , x7 , 17
sd x7 , 0 ( x6 ) // store old mprv to output
addi x6 , x6 , 8
addi x16 , x16 , 8
not x7 , x29
slli x7 , x7 , 17
slli x29 , x29 , 17
csrc mstatus , x7
csrs mstatus , x29 // clear or set mprv bit
li x7 , 0x1800
csrc mstatus , x7
li x7 , 0x800
csrs mstatus , x7 // set mpp to supervisor mode to see if mprv=1 really executes in the mpp mode
j test_loop
2022-01-30 23:08:02 +00:00
write_pmpcfg_0 :
// writes the value in x29 to the pmpcfg register specified in x28.
// then writes the final value of pmpcfgX to the output.
csrw pmpcfg0 , x29
csrr x30 , pmpcfg0
2022-02-14 05:30:00 +00:00
j write_pmpcfg_end
2022-01-30 23:08:02 +00:00
write_pmpcfg_2 :
csrw pmpcfg2 , x29
csrr x30 , pmpcfg2 // I would use csrrw but we need the value AFTER the csr has been written
2022-02-14 05:30:00 +00:00
j write_pmpcfg_end
2022-01-30 23:08:02 +00:00
write_pmpcfg_end :
sd x30 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop
write_pmpaddr_0 :
2022-02-14 02:22:12 +00:00
// write_read_csr pmpaddr0, x29
2022-01-30 23:08:02 +00:00
// writes the value in x29 to the pmpaddr register specified in x28.
// then writes the final value of pmpaddrX to the output.
csrw pmpaddr0 , x29
csrr x30 , pmpaddr0
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_1 :
csrw pmpaddr1 , x29
csrr x30 , pmpaddr1
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_2 :
csrw pmpaddr2 , x29
csrr x30 , pmpaddr2
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_3 :
csrw pmpaddr3 , x29
csrr x30 , pmpaddr3
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_4 :
csrw pmpaddr4 , x29
csrr x30 , pmpaddr4
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_5 :
csrw pmpaddr5 , x29
csrr x30 , pmpaddr5
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_6 :
csrw pmpaddr6 , x29
csrr x30 , pmpaddr6
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_7 :
csrw pmpaddr7 , x29
csrr x30 , pmpaddr7
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_8 :
csrw pmpaddr8 , x29
csrr x30 , pmpaddr8
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_9 :
csrw pmpaddr9 , x29
csrr x30 , pmpaddr9
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_10 :
csrw pmpaddr10 , x29
csrr x30 , pmpaddr10
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_11 :
csrw pmpaddr11 , x29
csrr x30 , pmpaddr11
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_12 :
csrw pmpaddr12 , x29
csrr x30 , pmpaddr12
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_13 :
csrw pmpaddr13 , x29
csrr x30 , pmpaddr13
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_14 :
csrw pmpaddr14 , x29
csrr x30 , pmpaddr14
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_15 :
csrw pmpaddr15 , x29
csrr x30 , pmpaddr15
j write_pmpaddr_end
2022-02-14 05:30:00 +00:00
2022-01-30 23:08:02 +00:00
write_pmpaddr_end :
sd x30 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop
executable_test :
// Execute the code at the address in x28, returning the value in x7.
// Assumes the code modifies x7, to become the value stored in x29 for this test.
fence . i // forces cache and main memory to sync so execution code written by the program can run.
li x7 , 0xBAD
jalr x28
sd x7 , 0 ( x6 )
addi x6 , x6 , 8
addi x16 , x16 , 8
j test_loop
2022-02-14 02:22:12 +00:00
. endm
// notably, terminate_test is not a part of the test table macro because it needs to be defined
// in any type of test, macro or test table, for the trap handler to work
2022-01-30 23:08:02 +00:00
terminate_test :
li a0 , 2 // Trap handler behavior (go to machine mode)
ecall // writes mcause to the output.
csrw mtvec , x4 // restore original trap handler to halt program
RVTEST_CODE_END
RVMODEL_HALT
2022-02-14 02:22:12 +00:00
. macro TEST_STACK_AND_DATA
2022-01-30 23:08:02 +00:00
RVTEST_DATA_BEGIN
. align 4
rvtest_data :
. word 0xbabecafe
RVTEST_DATA_END
. align 3 // align stack to 8 byte boundary
2022-04-06 06:43:03 +00:00
stack_bottom :
2022-01-30 23:08:02 +00:00
. fill 1024 , 4 , 0xdeadbeef
2022-04-06 06:43:03 +00:00
stack_top :
. align 3
mscratch_bottom :
. fill 512 , 4 , 0xdeadbeef
mscratch_top :
. align 3
sscratch_bottom :
. fill 512 , 4 , 0xdeadbeef
sscratch_top :
2022-01-30 23:08:02 +00:00
RVMODEL_DATA_BEGIN
test_1_res :
. fill 1024 , 4 , 0xdeadbeef
RVMODEL_DATA_END
# ifdef rvtest_mtrap_routine
mtrap_sigptr :
. fill 64 * ( XLEN / 32 ) , 4 , 0xdeadbeef
# endif
# ifdef rvtest_gpr_save
gpr_save :
. fill 32 * ( XLEN / 32 ) , 4 , 0xdeadbeef
# endif
2022-02-14 02:22:12 +00:00
. endm