cvw/wally-pipelined/src/ifu/ifu.sv

219 lines
8.9 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// ifu.sv
2021-01-15 04:37:51 +00:00
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Instrunction Fetch Unit
// PC, branch prediction, instruction cache
2021-01-15 04:37:51 +00:00
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
2021-01-15 04:37:51 +00:00
module ifu (
input logic clk, reset,
2021-02-08 04:21:55 +00:00
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushF, FlushD, FlushE, FlushM, FlushW,
// Fetch
2021-02-24 12:25:03 +00:00
input logic [`XLEN-1:0] InstrInF,
output logic [`XLEN-1:0] PCF,
output logic [`XLEN-1:0] InstrPAdrF,
2021-02-08 04:21:55 +00:00
output logic InstrReadF,
// Decode
// Execute
output logic [`XLEN-1:0] PCLinkE,
input logic PCSrcE,
input logic [`XLEN-1:0] PCTargetE,
output logic [`XLEN-1:0] PCE,
output logic BPPredWrongE,
// Mem
input logic RetM, TrapM,
input logic [`XLEN-1:0] PrivilegedNextPCM,
output logic [31:0] InstrD, InstrM,
output logic [`XLEN-1:0] PCM,
// Writeback
2021-01-28 05:22:05 +00:00
output logic [`XLEN-1:0] PCLinkW,
// Faults
input logic IllegalBaseInstrFaultD,
output logic IllegalIEUInstrFaultD,
output logic InstrMisalignedFaultM,
2021-02-24 12:25:03 +00:00
output logic [`XLEN-1:0] InstrMisalignedAdrM,
2021-03-04 08:30:06 +00:00
// TLB management
2021-03-04 08:11:34 +00:00
//input logic [`XLEN-1:0] PageTableEntryF,
input logic [`XLEN-1:0] SATP_REGW,
2021-03-04 08:11:34 +00:00
//input logic ITLBWriteF, ITLBFlushF,
output logic ITLBMissF, ITLBHitF,
2021-02-24 12:25:03 +00:00
// bogus
input logic [15:0] rd2
);
2021-01-15 04:37:51 +00:00
logic [`XLEN-1:0] UnalignedPCNextF, PCNextF;
2021-01-15 04:37:51 +00:00
logic misaligned, BranchMisalignedFaultE, BranchMisalignedFaultM, TrapMisalignedFaultM;
2021-02-26 14:17:36 +00:00
logic PrivilegedChangePCM;
logic IllegalCompInstrD;
logic [`XLEN-1:0] PCPlusUpperF, PCPlus2or4F, PCD, PCW, PCLinkD, PCLinkM;
logic CompressedF;
2021-02-24 12:25:03 +00:00
logic [31:0] InstrF, InstrRawD, InstrE, InstrW;
logic [31:0] nop = 32'h00000013; // instruction for NOP
2021-03-04 08:11:34 +00:00
// *** temporary hack until walker is hooked up -- Thomas F
logic [`XLEN-1:0] PageTableEntryF = '0;
logic ITLBFlushF = '0;
logic ITLBWriteF = '0;
tlb #(3) itlb(clk, reset, SATP_REGW, PCF, PageTableEntryF, ITLBWriteF, ITLBFlushF,
2021-03-04 08:11:34 +00:00
InstrPAdrF, ITLBMissF, ITLBHitF);
// branch predictor signals
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF, PCCorrectE, PCNext0F, PCNext1F;
logic [3:0] InstrClassD, InstrClassE;
// *** put memory interface on here, InstrF becomes output
2021-03-04 08:11:34 +00:00
//assign InstrPAdrF = PCF; // *** no MMU
2021-02-15 15:10:50 +00:00
//assign InstrReadF = ~StallD; // *** & ICacheMissF; add later
assign InstrReadF = 1; // *** & ICacheMissF; add later
2021-01-15 04:37:51 +00:00
assign PrivilegedChangePCM = RetM | TrapM;
2021-02-09 16:02:17 +00:00
//mux3 #(`XLEN) pcmux(PCPlus2or4F, PCCorrectE, PrivilegedNextPCM, {PrivilegedChangePCM, BPPredWrongE}, UnalignedPCNextF);
mux2 #(`XLEN) pcmux0(.d0(PCPlus2or4F),
.d1(BPPredPCF),
.s(SelBPPredF),
.y(PCNext0F));
mux2 #(`XLEN) pcmux1(.d0(PCNext0F),
.d1(PCCorrectE),
.s(BPPredWrongE),
.y(PCNext1F));
mux2 #(`XLEN) pcmux2(.d0(PCNext1F),
.d1(PrivilegedNextPCM),
.s(PrivilegedChangePCM),
.y(UnalignedPCNextF));
assign PCNextF = {UnalignedPCNextF[`XLEN-1:1], 1'b0}; // hart-SPEC p. 21 about 16-bit alignment
2021-02-15 15:10:50 +00:00
flopenl #(`XLEN) pcreg(clk, reset, ~StallF, PCNextF, `RESET_VECTOR, PCF);
// branch and jump predictor
// I am making the port connection explicit for now as I want to see them and they will be changing.
bpred bpred(.clk(clk),
.reset(reset),
.StallF(StallF),
.StallD(StallD),
.StallE(1'b0), // *** may need this eventually
.FlushF(FlushF),
.FlushD(FlushD),
.FlushE(FlushE),
.PCNextF(PCNextF),
.BPPredPCF(BPPredPCF),
.SelBPPredF(SelBPPredF),
.PCE(PCE),
.PCSrcE(PCSrcE),
.PCTargetE(PCTargetE),
.PCD(PCD),
.PCLinkE(PCLinkE),
.InstrClassE(InstrClassE),
.BPPredWrongE(BPPredWrongE));
// The true correct target is PCTargetE if PCSrcE is 1 else it is the fall through PCLinkE.
assign PCCorrectE = PCSrcE ? PCTargetE : PCLinkE;
// pcadder
// add 2 or 4 to the PC, based on whether the instruction is 16 bits or 32
assign CompressedF = (InstrF[1:0] != 2'b11); // is it a 16-bit compressed instruction?
assign PCPlusUpperF = PCF[`XLEN-1:2] + 1; // add 4 to PC
// choose PC+2 or PC+4
always_comb
if (CompressedF) // add 2
if (PCF[1]) PCPlus2or4F = {PCPlusUpperF, 2'b00};
else PCPlus2or4F = {PCF[`XLEN-1:2], 2'b10};
else PCPlus2or4F = {PCPlusUpperF, PCF[1:0]}; // add 4
2021-01-15 04:37:51 +00:00
2021-02-24 12:25:03 +00:00
// harris 2/23/21 Add code to fetch instruction split across two words
generate
if (`XLEN==32) begin
assign InstrF = PCF[1] ? {rd2[15:0], InstrInF[31:16]} : InstrInF;
end else begin
assign InstrF = PCF[2] ? (PCF[1] ? {rd2[15:0], InstrInF[63:48]} : InstrInF[63:32])
: (PCF[1] ? InstrInF[47:16] : InstrInF[31:0]);
end
endgenerate
// Decode stage pipeline register and logic
flopenl #(32) InstrDReg(clk, reset, ~StallD, (FlushD ? nop : InstrF), nop, InstrRawD);
flopenrc #(`XLEN) PCDReg(clk, reset, FlushD, ~StallD, PCF, PCD);
2021-01-28 05:22:05 +00:00
// expand 16-bit compressed instructions to 32 bits
decompress decomp(.*);
assign IllegalIEUInstrFaultD = IllegalBaseInstrFaultD | IllegalCompInstrD; // illegal if bad 32 or 16-bit instr
// *** combine these with others in better way, including M, F
// the branch predictor needs a compact decoding of the instruction class.
// *** consider adding in the alternate return address x5 for returns.
assign InstrClassD[3] = InstrD[6:0] == 7'h67 && InstrD[19:15] == 5'h01; // return
assign InstrClassD[2] = InstrD[6:0] == 7'h67 && InstrD[19:15] != 5'h01; // jump register, but not return
assign InstrClassD[1] = InstrD[6:0] == 7'h6F; // jump
assign InstrClassD[0] = InstrD[6:0] == 7'h63; // branch
2021-01-15 04:37:51 +00:00
// Misaligned PC logic
generate
if (`C_SUPPORTED) // C supports compressed instructions on halfword boundaries
assign misaligned = PCNextF[0];
else // instructions must be on word boundaries
assign misaligned = |PCNextF[1:0];
endgenerate
// pipeline misaligned faults to M stage
assign BranchMisalignedFaultE = misaligned & PCSrcE; // E-stage (Branch/Jump) misaligned
2021-02-08 04:21:55 +00:00
flopenr #(1) InstrMisalginedReg(clk, reset, ~StallM, BranchMisalignedFaultE, BranchMisalignedFaultM);
flopenr #(`XLEN) InstrMisalignedAdrReg(clk, reset, ~StallM, PCNextF, InstrMisalignedAdrM);
2021-01-15 04:37:51 +00:00
assign TrapMisalignedFaultM = misaligned & PrivilegedChangePCM;
assign InstrMisalignedFaultM = BranchMisalignedFaultM; // | TrapMisalignedFaultM; *** put this back in without causing a cyclic path
2021-02-08 04:21:55 +00:00
flopenr #(32) InstrEReg(clk, reset, ~StallE, FlushE ? nop : InstrD, InstrE);
flopenr #(32) InstrMReg(clk, reset, ~StallM, FlushM ? nop : InstrE, InstrM);
flopenr #(32) InstrWReg(clk, reset, ~StallW, FlushW ? nop : InstrM, InstrW); // just for testbench, delete later
flopenr #(`XLEN) PCEReg(clk, reset, ~StallE, PCD, PCE);
flopenr #(`XLEN) PCMReg(clk, reset, ~StallM, PCE, PCM);
flopenr #(`XLEN) PCWReg(clk, reset, ~StallW, PCM, PCW); // *** probably not needed; delete later
2021-01-28 05:22:05 +00:00
flopenrc #(4) InstrClassRegE(.clk(clk),
.reset(reset),
.en(~StallE),
.clear(FlushE),
.d(InstrClassD),
.q(InstrClassE));
2021-01-29 02:40:48 +00:00
// seems like there should be a lower-cost way of doing this PC+2 or PC+4 for JAL.
// either have ALU compute PC+2/4 and feed into ALUResult input of ResultMux or
// have dedicated adder in Mem stage based on PCM + 2 or 4
// *** redo this
2021-02-08 04:21:55 +00:00
flopenr #(`XLEN) PCPDReg(clk, reset, ~StallD, PCPlus2or4F, PCLinkD);
flopenr #(`XLEN) PCPEReg(clk, reset, ~StallE, PCLinkD, PCLinkE);
flopenr #(`XLEN) PCPMReg(clk, reset, ~StallM, PCLinkE, PCLinkM);
flopenr #(`XLEN) PCPWReg(clk, reset, ~StallW, PCLinkM, PCLinkW);
2021-01-15 04:37:51 +00:00
endmodule