cvw/pipelined/src/fpu/fmalza.sv

64 lines
2.8 KiB
Systemverilog
Raw Normal View History

2022-08-01 18:07:38 +00:00
///////////////////////////////////////////
//
// Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu
// Modified:
//
// Purpose: Leading Zero Anticipator
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module fmalza( // [Schmookler & Nowka, Leading zero anticipation and detection, IEEE Sym. Computer Arithmetic, 2001]
2022-08-01 18:36:21 +00:00
input logic [3*`NF+6:0] A, // addend
input logic [2*`NF+3:0] Pm, // product
input logic Cin, // carry in
output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count for the positive result
2022-08-01 18:07:38 +00:00
);
2022-08-01 18:23:39 +00:00
localparam WIDTH = 3*`NF+7;
2022-08-01 18:07:38 +00:00
2022-08-01 18:36:21 +00:00
logic [WIDTH-1:0] AA, B, P, G, K, F;
logic [WIDTH-2:0] Pp1, Gm1, Km1;
2022-08-01 18:07:38 +00:00
2022-08-01 18:23:39 +00:00
assign B = {{(`NF+3){1'b0}}, Pm}; // Zero extend product
2022-08-01 18:36:21 +00:00
assign AA = A + Cin;
2022-08-01 18:07:38 +00:00
2022-08-01 18:36:21 +00:00
assign P = AA^B;
assign G = AA&B;
assign K= ~AA&~B;
2022-08-01 18:07:38 +00:00
2022-08-01 18:36:21 +00:00
assign Pp1 = P[WIDTH-1:1];
assign Gm1 = {G[WIDTH-3:0], Cin};
assign Km1 = {K[WIDTH-3:0], ~Cin};
2022-08-01 18:07:38 +00:00
// Apply function to determine Leading pattern
// - note: the paper linked above uses the numbering system where 0 is the most significant bit
2022-08-01 18:23:39 +00:00
//f[n] = ~P[n]&P[n-1] note: n is the MSB
//f[i] = (P[i+1]&(G[i]&~K[i-1] | K[i]&~G[i-1])) | (~P[i+1]&(K[i]&~K[i-1] | G[i]&~G[i-1]))
assign F[WIDTH-1] = ~P[WIDTH-1]&P[WIDTH-2];
2022-08-01 18:36:21 +00:00
assign F[WIDTH-2:0] = (Pp1&(G[3*`NF+5:0]&{~K[3*`NF+4:0], 1'b0} | K[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~P[3*`NF+6:1]&(K[3*`NF+5:0]&{~K[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1}));
2022-08-01 18:07:38 +00:00
2022-08-01 18:36:21 +00:00
lzc #(WIDTH) lzc (.num(F), .ZeroCnt(SCnt));
2022-08-01 18:07:38 +00:00
endmodule