/////////////////////////////////////////// // // Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu // Modified: // // Purpose: Leading Zero Anticipator // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fmalza( // [Schmookler & Nowka, Leading zero anticipation and detection, IEEE Sym. Computer Arithmetic, 2001] input logic [3*`NF+6:0] A, // addend input logic [2*`NF+3:0] Pm, // product input logic Cin, // carry in output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count for the positive result ); localparam WIDTH = 3*`NF+7; logic [WIDTH-1:0] AA, B, P, G, K, F; logic [WIDTH-2:0] Pp1, Gm1, Km1; assign B = {{(`NF+3){1'b0}}, Pm}; // Zero extend product assign AA = A + Cin; assign P = AA^B; assign G = AA&B; assign K= ~AA&~B; assign Pp1 = P[WIDTH-1:1]; assign Gm1 = {G[WIDTH-3:0], Cin}; assign Km1 = {K[WIDTH-3:0], ~Cin}; // Apply function to determine Leading pattern // - note: the paper linked above uses the numbering system where 0 is the most significant bit //f[n] = ~P[n]&P[n-1] note: n is the MSB //f[i] = (P[i+1]&(G[i]&~K[i-1] | K[i]&~G[i-1])) | (~P[i+1]&(K[i]&~K[i-1] | G[i]&~G[i-1])) assign F[WIDTH-1] = ~P[WIDTH-1]&P[WIDTH-2]; assign F[WIDTH-2:0] = (Pp1&(G[3*`NF+5:0]&{~K[3*`NF+4:0], 1'b0} | K[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~P[3*`NF+6:1]&(K[3*`NF+5:0]&{~K[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})); lzc #(WIDTH) lzc (.num(F), .ZeroCnt(SCnt)); endmodule