cvw/pipelined/src/fpu/fdivsqrt/fdivsqrtpostproc.sv

143 lines
4.9 KiB
Systemverilog
Raw Normal View History

2022-09-07 13:12:23 +00:00
///////////////////////////////////////////
// fdivsqrtpostproc.sv
//
2022-09-19 21:26:32 +00:00
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
2022-09-07 13:12:23 +00:00
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module fdivsqrtpostproc(
input logic [`DIVb+3:0] WS, WC,
input logic [`DIVb-1:0] D,
input logic [`DIVb:0] FirstU, FirstUM,
input logic [`DIVb+1:0] FirstC,
input logic Firstun,
input logic SqrtM,
input logic SpecialCaseM,
2022-11-22 22:22:59 +00:00
input logic [`XLEN-1:0] ForwardedSrcAE,
2022-12-02 20:31:08 +00:00
input logic RemOpM, ALTBM, BZero, As,
input logic [`DIVBLEN:0] n, m,
output logic [`DIVb:0] QmM,
output logic WZero,
output logic DivSM
2022-09-07 13:12:23 +00:00
);
logic [`DIVb+3:0] W, Sum, RemDM;
2022-09-20 10:30:18 +00:00
logic [`DIVb:0] PreQmM;
2022-12-02 20:31:08 +00:00
logic NegStickyM, PostIncM;
2022-09-19 15:44:23 +00:00
logic weq0;
2022-12-02 20:31:08 +00:00
logic [`DIVBLEN:0] NormShiftM;
logic [`DIVb:0] IntQuotM, NormQuotM;
logic [`DIVb+3:0] IntRemM, NormRemM;
logic [`DIVb+3:0] PreResultM, ResultM;
// check for early termination on an exact result. If the result is not exact, the sticky should be set
2022-09-07 18:36:35 +00:00
aplusbeq0 #(`DIVb+4) wspluswceq0(WS, WC, weq0);
if (`RADIX == 2) begin
logic [`DIVb+3:0] FZero;
logic [`DIVb+2:0] FirstK;
2022-09-07 18:36:35 +00:00
logic wfeq0;
logic [`DIVb+3:0] WCF, WSF;
assign FirstK = ({1'b1, FirstC} & ~({1'b1, FirstC} << 1));
2022-09-19 07:43:27 +00:00
assign FZero = SqrtM ? {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0} : {3'b1,D,{`DIVb-`DIVN+2{1'b0}}};
2022-09-07 18:36:35 +00:00
csa #(`DIVb+4) fadd(WS, WC, FZero, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero};
aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0);
assign WZero = weq0|(wfeq0 & Firstun);
end else begin
2022-09-07 18:36:35 +00:00
assign WZero = weq0;
end
assign DivSM = ~WZero & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide
// Determine if sticky bit is negative
assign Sum = WC + WS;
assign W = $signed(Sum) >>> `LOGR;
2022-12-02 20:31:08 +00:00
assign NegStickyM = W[`DIVb+3];
assign RemDM = {4'b0000, D};
2022-09-07 13:12:23 +00:00
2022-12-02 20:31:08 +00:00
// Integer division: sign handling for div and rem
always_comb
if (~As)
2022-12-02 20:31:08 +00:00
if (NegStickyM) begin
NormQuotM = FirstUM;
NormRemM = W + RemDM;
2022-12-02 20:31:08 +00:00
PostIncM = 0;
end else begin
2022-12-02 20:31:08 +00:00
NormQuotM = FirstU;
NormRemM = W;
PostIncM = 0;
end
else
2022-12-02 20:31:08 +00:00
if (NegStickyM | weq0) begin
NormQuotM = FirstU;
NormRemM = W;
PostIncM = 0;
end else begin
2022-12-02 20:31:08 +00:00
NormQuotM = FirstU;
NormRemM = W - RemDM;
2022-12-02 20:31:08 +00:00
PostIncM = 1;
end
2022-11-14 00:06:38 +00:00
2022-12-02 20:31:08 +00:00
// Integer division: Special cases
2022-11-14 00:06:38 +00:00
always_comb
2022-12-02 20:31:08 +00:00
if(ALTBM) begin
IntQuotM = '0;
IntRemM = {{(`DIVb-`XLEN+4){1'b0}}, ForwardedSrcAE};
2022-11-14 00:06:38 +00:00
end else if (BZero) begin
2022-12-02 20:31:08 +00:00
IntQuotM = '1;
IntRemM = {{(`DIVb-`XLEN+4){1'b0}}, ForwardedSrcAE};
2022-11-22 22:22:59 +00:00
end else if (WZero) begin
2022-11-14 00:06:38 +00:00
if (weq0) begin
2022-12-02 20:31:08 +00:00
IntQuotM = FirstU;
IntRemM = '0;
2022-11-14 00:06:38 +00:00
end else begin
2022-12-02 20:31:08 +00:00
IntQuotM = FirstUM;
IntRemM = '0;
2022-11-14 00:06:38 +00:00
end
end else begin
2022-12-02 20:31:08 +00:00
IntQuotM = NormQuotM;
IntRemM = NormRemM;
2022-11-14 00:06:38 +00:00
end
2022-11-14 00:06:38 +00:00
always_comb
2022-12-02 20:31:08 +00:00
if (RemOpM) begin
NormShiftM = (m + (`DIVBLEN)'(`DIVa));
PreResultM = IntRemM;
2022-11-14 00:06:38 +00:00
end else begin
2022-12-02 20:31:08 +00:00
NormShiftM = ((`DIVBLEN)'(`DIVb) - (n << `LOGR));
PreResultM = {3'b000, IntQuotM};
2022-11-14 00:06:38 +00:00
end
2022-11-22 22:22:59 +00:00
2022-11-14 00:06:38 +00:00
// division takes the result from the next cycle, which is shifted to the left one more time so the square root also needs to be shifted
2022-11-15 20:31:23 +00:00
2022-12-02 20:31:08 +00:00
assign ResultM = ($signed(PreResultM) >>> NormShiftM) + {{(`DIVb+3){1'b0}}, (PostIncM & ~RemOpM)};
2022-11-14 00:06:38 +00:00
2022-12-02 20:31:08 +00:00
assign PreQmM = NegStickyM ? FirstUM : FirstU; // Select U or U-1 depending on negative sticky bit
2022-09-20 10:30:18 +00:00
assign QmM = SqrtM ? (PreQmM << 1) : PreQmM;
2022-09-07 13:12:23 +00:00
endmodule