cvw/src/mmu/hptw.sv

334 lines
19 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
2021-07-18 08:11:33 +00:00
// hptw.sv
//
// Written: tfleming@hmc.edu 2 March 2021
2021-07-18 08:11:33 +00:00
// Modified: david_harris@hmc.edu 18 July 2021 cleanup and simplification
// kmacsaigoren@hmc.edu 1 June 2021
2021-06-01 21:50:37 +00:00
// implemented SV48 on top of SV39. This included, adding a level of the FSM for the extra page number segment
2021-12-20 04:21:03 +00:00
// adding support for terapage encoding, and for setting the HPTWAdr using the new level,
2021-06-01 21:50:37 +00:00
// adding the internal SvMode signal
//
2023-01-15 02:14:38 +00:00
// Purpose: Hardware Page Table Walker
//
// Documentation: RISC-V System on Chip Design
//
2023-01-11 23:15:08 +00:00
// A component of the CORE-V-WALLY configurable RISC-V project.
// https://github.com/openhwgroup/cvw
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
2023-05-24 21:12:41 +00:00
module hptw import cvw::*; #(parameter cvw_t P) (
2023-06-13 01:31:38 +00:00
input logic clk, reset,
2023-05-24 21:12:41 +00:00
input logic [P.XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table
input logic [P.XLEN-1:0] PCSpillF, // addresses to translate
input logic [P.XLEN+1:0] IEUAdrExtM, // addresses to translate
2023-06-13 01:31:38 +00:00
input logic [1:0] MemRWM, AtomicM,
2023-03-24 22:32:25 +00:00
// system status
2023-06-13 01:31:38 +00:00
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
2023-12-13 19:49:04 +00:00
input logic ENVCFG_ADUE, // HPTW A/D Update enable
2023-06-13 01:31:38 +00:00
input logic [1:0] PrivilegeModeW,
2023-05-24 21:12:41 +00:00
input logic [P.XLEN-1:0] ReadDataM, // page table entry from LSU
input logic [P.XLEN-1:0] WriteDataM,
input logic DCacheBusStallM, // stall from LSU
2023-06-13 01:31:38 +00:00
input logic [2:0] Funct3M,
input logic [6:0] Funct7M,
input logic ITLBMissOrUpdateAF,
input logic DTLBMissOrUpdateDAM,
2023-06-13 01:31:38 +00:00
input logic FlushW,
2023-05-24 21:12:41 +00:00
output logic [P.XLEN-1:0] PTE, // page table entry to TLBs
2023-06-13 01:31:38 +00:00
output logic [1:0] PageType, // page type to TLBs
output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry
output logic [1:0] PreLSURWM,
2023-05-24 21:12:41 +00:00
output logic [P.XLEN+1:0] IHAdrM,
output logic [P.XLEN-1:0] IHWriteDataM,
2023-06-13 01:31:38 +00:00
output logic [1:0] LSUAtomicM,
output logic [2:0] LSUFunct3M,
output logic [6:0] LSUFunct7M,
output logic IgnoreRequestTLB,
output logic SelHPTW,
output logic HPTWStall,
input logic LSULoadAccessFaultM, LSUStoreAmoAccessFaultM,
input logic LSULoadPageFaultM, LSUStoreAmoPageFaultM,
output logic LoadAccessFaultM, StoreAmoAccessFaultM, HPTWInstrAccessFaultF,
output logic LoadPageFaultM, StoreAmoPageFaultM, HPTWInstrPageFaultF
);
typedef enum logic [3:0] {L0_ADR, L0_RD,
2023-03-24 22:32:25 +00:00
L1_ADR, L1_RD,
L2_ADR, L2_RD,
L3_ADR, L3_RD,
LEAF, IDLE, UPDATE_PTE,
FAULT} statetype;
2023-06-13 01:31:38 +00:00
logic DTLBWalk; // register TLBs translation miss requests
2023-05-24 21:12:41 +00:00
logic [P.PPN_BITS-1:0] BasePageTablePPN;
logic [P.PPN_BITS-1:0] CurrentPPN;
2023-06-13 01:31:38 +00:00
logic Executable, Writable, Readable, Valid, PTE_U;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic TLBMissOrUpdateDA;
2023-06-13 01:31:38 +00:00
logic PRegEn;
logic [1:0] NextPageType;
2023-05-24 21:12:41 +00:00
logic [P.SVMODE_BITS-1:0] SvMode;
logic [P.XLEN-1:0] TranslationVAdr;
logic [P.XLEN-1:0] NextPTE;
2023-06-13 01:31:38 +00:00
logic UpdatePTE;
logic HPTWUpdateDA;
2023-05-24 21:12:41 +00:00
logic [P.PA_BITS-1:0] HPTWReadAdr;
2023-06-13 01:31:38 +00:00
logic SelHPTWAdr;
2023-05-24 21:12:41 +00:00
logic [P.XLEN+1:0] HPTWAdrExt;
2023-06-13 01:31:38 +00:00
logic LSUAccessFaultM;
2023-05-24 21:12:41 +00:00
logic [P.PA_BITS-1:0] HPTWAdr;
2023-06-13 01:31:38 +00:00
logic [1:0] HPTWRW;
logic [2:0] HPTWSize; // 32 or 64 bit access
statetype WalkerState, NextWalkerState, InitialWalkerState;
logic HPTWLoadAccessFault, HPTWStoreAmoAccessFault, HPTWInstrAccessFault;
logic HPTWLoadAccessFaultDelay, HPTWStoreAmoAccessFaultDelay, HPTWInstrAccessFaultDelay;
logic HPTWLoadPageFault, HPTWStoreAmoPageFault, HPTWInstrPageFault;
logic HPTWLoadPageFaultDelay, HPTWStoreAmoPageFaultDelay, HPTWInstrPageFaultDelay;
2023-06-13 01:31:38 +00:00
logic HPTWAccessFaultDelay;
2024-06-18 14:28:52 +00:00
logic TakeHPTWFault;
logic PBMTFaultM;
logic HPTWFaultM;
logic ResetPTE;
// map hptw access faults onto either the original LSU load/store fault or instruction access fault
2023-06-13 01:31:38 +00:00
assign LSUAccessFaultM = LSULoadAccessFaultM | LSUStoreAmoAccessFaultM;
assign HPTWFaultM = LSUAccessFaultM | PBMTFaultM;
2024-01-26 18:46:38 +00:00
assign HPTWLoadAccessFault = LSUAccessFaultM & DTLBWalk & MemRWM[1] & ~MemRWM[0];
2023-04-05 18:20:04 +00:00
assign HPTWStoreAmoAccessFault = LSUAccessFaultM & DTLBWalk & MemRWM[0];
assign HPTWInstrAccessFault = LSUAccessFaultM & ~DTLBWalk;
2024-01-26 18:46:38 +00:00
assign HPTWLoadPageFault = PBMTFaultM & DTLBWalk & MemRWM[1] & ~MemRWM[0];
assign HPTWStoreAmoPageFault = PBMTFaultM & DTLBWalk & MemRWM[0];
assign HPTWInstrPageFault = PBMTFaultM & ~DTLBWalk;
2023-04-05 18:20:04 +00:00
2024-06-18 14:28:52 +00:00
flopr #(6) HPTWAccesFaultReg(clk, reset, {HPTWLoadAccessFault, HPTWStoreAmoAccessFault, HPTWInstrAccessFault,
HPTWLoadPageFault, HPTWStoreAmoPageFault, HPTWInstrPageFault},
2024-06-18 14:28:52 +00:00
{HPTWLoadAccessFaultDelay, HPTWStoreAmoAccessFaultDelay, HPTWInstrAccessFaultDelay,
HPTWLoadPageFaultDelay, HPTWStoreAmoPageFaultDelay, HPTWInstrPageFaultDelay});
2023-04-05 18:20:04 +00:00
assign TakeHPTWFault = WalkerState != IDLE;
2024-01-26 18:46:38 +00:00
// Improve timing by taking HPTW faults off critical path because these are multicycle operations anyway
assign LoadAccessFaultM = TakeHPTWFault ? HPTWLoadAccessFaultDelay : LSULoadAccessFaultM;
assign StoreAmoAccessFaultM = TakeHPTWFault ? HPTWStoreAmoAccessFaultDelay : LSUStoreAmoAccessFaultM;
assign HPTWInstrAccessFaultF = TakeHPTWFault ? HPTWInstrAccessFaultDelay : 1'b0;
2024-01-26 18:46:38 +00:00
assign LoadPageFaultM = TakeHPTWFault ? HPTWLoadPageFaultDelay : LSULoadPageFaultM;
assign StoreAmoPageFaultM = TakeHPTWFault ? HPTWStoreAmoPageFaultDelay : LSUStoreAmoPageFaultM;
assign HPTWInstrPageFaultF = TakeHPTWFault ? HPTWInstrPageFaultDelay : 1'b0;
2023-03-24 22:32:25 +00:00
// Extract bits from CSRs and inputs
2023-05-24 21:12:41 +00:00
assign SvMode = SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[P.PPN_BITS-1:0];
assign TLBMissOrUpdateDA = DTLBMissOrUpdateDAM | ITLBMissOrUpdateAF;
2021-07-06 03:35:44 +00:00
2023-03-24 22:32:25 +00:00
// Determine which address to translate
2023-05-24 21:12:41 +00:00
mux2 #(P.XLEN) vadrmux(PCSpillF, IEUAdrExtM[P.XLEN-1:0], DTLBWalk, TranslationVAdr);
assign CurrentPPN = PTE[P.PPN_BITS+9:10];
2021-07-17 08:12:31 +00:00
2023-03-24 22:32:25 +00:00
// State flops
flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissOrUpdateDAM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB)
assign PRegEn = HPTWRW[1] & ~DCacheBusStallM | UpdatePTE;
flopenr #(P.XLEN) PTEReg(clk, ResetPTE, PRegEn, NextPTE, PTE); // Capture page table entry from data cache
2023-03-24 22:32:25 +00:00
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {PTE_U, Executable, Writable, Readable, Valid} = PTE[4:0];
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid & ~(Writable & ~Readable);
assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = Valid & ~LeafPTE;
if(P.XLEN == 64) assign PBMTFaultM = ValidNonLeafPTE & (|PTE[62:61]);
else assign PBMTFaultM = 1'b0;
2023-05-24 21:12:41 +00:00
if(P.SVADU_SUPPORTED) begin : hptwwrites
2023-06-13 01:31:38 +00:00
logic ReadAccess, WriteAccess;
logic InvalidRead, InvalidWrite, InvalidOp;
2023-07-19 19:59:37 +00:00
logic UpperBitsUnequal, UpperBitsUnequalD;
2023-06-13 01:31:38 +00:00
logic OtherPageFault;
logic [1:0] EffectivePrivilegeMode;
logic ImproperPrivilege;
logic SaveHPTWAdr, SelHPTWWriteAdr;
2023-05-24 21:12:41 +00:00
logic [P.PA_BITS-1:0] HPTWWriteAdr;
2023-06-13 01:31:38 +00:00
logic SetDirty;
logic Dirty, Accessed;
2023-05-24 21:12:41 +00:00
logic [P.XLEN-1:0] AccessedPTE;
2023-05-24 21:12:41 +00:00
assign AccessedPTE = {PTE[P.XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
2024-06-19 19:02:56 +00:00
mux2 #(P.XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE); // NextPTE = ReadDataM when ADUE = 0 because UpdatePTE = 0
2023-05-24 21:12:41 +00:00
flopenr #(P.PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr);
assign SaveHPTWAdr = (NextWalkerState == L0_RD | NextWalkerState == L1_RD | NextWalkerState == L2_RD | NextWalkerState == L3_RD); // save the HPTWAdr when the walker is about to read the PTE at any level; the last level read is the one to write during UpdatePTE
assign SelHPTWWriteAdr = UpdatePTE | HPTWRW[0];
2023-05-24 21:12:41 +00:00
mux2 #(P.PA_BITS) HPTWWriteAdrMux(HPTWReadAdr, HPTWWriteAdr, SelHPTWWriteAdr, HPTWAdr);
assign {Dirty, Accessed} = PTE[7:6];
assign WriteAccess = MemRWM[0]; // implies | (|AtomicM);
2022-02-28 05:54:34 +00:00
assign SetDirty = ~Dirty & DTLBWalk & WriteAccess;
assign ReadAccess = MemRWM[1];
2022-02-28 05:54:34 +00:00
assign EffectivePrivilegeMode = DTLBWalk ? (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW) : PrivilegeModeW; // DTLB uses MPP mode when MPRV is 1
2023-05-24 21:12:41 +00:00
assign ImproperPrivilege = ((EffectivePrivilegeMode == P.U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == P.S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk));
2022-11-04 22:21:09 +00:00
// Check for page faults
vm64check #(P) vm64check(.SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]), .VAdr(TranslationVAdr),
2023-03-24 22:32:25 +00:00
.SV39Mode(), .UpperBitsUnequal);
2023-07-19 19:59:37 +00:00
// This register is not functionally necessary, but improves the critical path.
flopr #(1) upperbitsunequalreg(clk, reset, UpperBitsUnequal, UpperBitsUnequalD);
assign InvalidRead = ReadAccess & ~Readable & (~STATUS_MXR | ~Executable);
assign InvalidWrite = WriteAccess & ~Writable;
2023-04-28 14:52:08 +00:00
assign InvalidOp = DTLBWalk ? (InvalidRead | InvalidWrite) : ~Executable;
2023-07-19 19:59:37 +00:00
assign OtherPageFault = ImproperPrivilege | InvalidOp | UpperBitsUnequalD | Misaligned | ~Valid;
// hptw needs to know if there is a Dirty or Access fault occuring on this
// memory access. If there is the PTE needs to be updated seting Access
// and possibly also Dirty. Dirty is set if the operation is a store/amo.
2023-12-13 19:49:04 +00:00
// However any other fault should not cause the update, and updates are in software when ENVCFG_ADUE = 0
2024-01-26 18:46:38 +00:00
assign HPTWUpdateDA = ValidLeafPTE & (~Accessed | SetDirty) & ENVCFG_ADUE & ~OtherPageFault;
2023-12-13 19:49:04 +00:00
assign HPTWRW[0] = (WalkerState == UPDATE_PTE); // HPTWRW[0] will always be 0 if ADUE = 0 because HPTWUpdateDA will be 0 so WalkerState never is UPDATE_PTE
assign UpdatePTE = (WalkerState == LEAF) & HPTWUpdateDA; // UpdatePTE will always be 0 if ADUE = 0 because HPTWUpdateDA will be 0
end else begin // block: hptwwrites
2024-06-19 19:02:56 +00:00
assign NextPTE = ReadDataM;
assign HPTWAdr = HPTWReadAdr;
assign HPTWUpdateDA = 1'b0;
assign UpdatePTE = 1'b0;
assign HPTWRW[0] = 1'b0;
end
2023-03-24 22:32:25 +00:00
// Enable and select signals based on states
assign StartWalk = (WalkerState == IDLE) & TLBMissOrUpdateDA;
2023-06-13 01:31:38 +00:00
assign HPTWRW[1] = (WalkerState == L3_RD) | (WalkerState == L2_RD) | (WalkerState == L1_RD) | (WalkerState == L0_RD);
2023-03-24 22:32:25 +00:00
assign DTLBWriteM = (WalkerState == LEAF & ~HPTWUpdateDA) & DTLBWalk;
assign ITLBWriteF = (WalkerState == LEAF & ~HPTWUpdateDA) & ~DTLBWalk;
2023-03-24 22:32:25 +00:00
// FSM to track PageType based on the levels of the page table traversed
flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
always_comb
case (WalkerState)
L3_RD: NextPageType = 2'b11; // terapage
L2_RD: NextPageType = 2'b10; // gigapage
L1_RD: NextPageType = 2'b01; // megapage
L0_RD: NextPageType = 2'b00; // kilopage
default: NextPageType = PageType;
endcase
2023-03-24 22:32:25 +00:00
// HPTWAdr muxing
2023-05-24 21:12:41 +00:00
if (P.XLEN==32) begin // RV32
2023-03-24 22:32:25 +00:00
logic [9:0] VPN;
2023-05-24 21:12:41 +00:00
logic [P.PPN_BITS-1:0] PPN;
2023-03-24 22:32:25 +00:00
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
assign HPTWReadAdr = {PPN, VPN, 2'b00};
assign HPTWSize = 3'b010;
end else begin // RV64
logic [8:0] VPN;
2023-05-24 21:12:41 +00:00
logic [P.PPN_BITS-1:0] PPN;
2023-03-24 22:32:25 +00:00
always_comb
case (WalkerState) // select VPN field based on HPTW state
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
L2_ADR, L2_RD: VPN = TranslationVAdr[38:30];
L1_ADR, L1_RD: VPN = TranslationVAdr[29:21];
default: VPN = TranslationVAdr[20:12];
endcase
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
2023-05-24 21:12:41 +00:00
(SvMode != P.SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
2023-03-24 22:32:25 +00:00
assign HPTWReadAdr = {PPN, VPN, 3'b000};
assign HPTWSize = 3'b011;
end
2021-07-17 15:31:16 +00:00
2023-03-24 22:32:25 +00:00
// Initial state and misalignment for RV32/64
2023-05-24 21:12:41 +00:00
if (P.XLEN == 32) begin
2023-03-24 22:32:25 +00:00
assign InitialWalkerState = L1_ADR;
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
assign Misaligned = ((WalkerState == L0_ADR) & MegapageMisaligned);
end else begin
logic GigapageMisaligned, TerapageMisaligned;
2023-05-24 21:12:41 +00:00
assign InitialWalkerState = (SvMode == P.SV48) ? L3_ADR : L2_ADR;
2024-06-19 19:02:56 +00:00
assign TerapageMisaligned = |(CurrentPPN[26:0]); // Must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // Must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // Must have zero PPN0
2023-03-24 22:32:25 +00:00
assign Misaligned = ((WalkerState == L2_ADR) & TerapageMisaligned) | ((WalkerState == L1_ADR) & GigapageMisaligned) | ((WalkerState == L0_ADR) & MegapageMisaligned);
end
2023-03-24 22:32:25 +00:00
// Page Table Walker FSM
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset | FlushW, 1'b1, NextWalkerState, IDLE, WalkerState);
always_comb
case (WalkerState)
IDLE: if (TLBMissOrUpdateDA) NextWalkerState = InitialWalkerState;
2023-03-24 22:32:25 +00:00
else NextWalkerState = IDLE;
2024-06-19 19:02:56 +00:00
L3_ADR: NextWalkerState = L3_RD; // First access in SV48
L3_RD: if (HPTWFaultM) NextWalkerState = FAULT;
else if (DCacheBusStallM) NextWalkerState = L3_RD;
2023-03-24 22:32:25 +00:00
else NextWalkerState = L2_ADR;
L2_ADR: if (HPTWFaultM) NextWalkerState = FAULT;
else if (InitialWalkerState == L2_ADR | ValidNonLeafPTE) NextWalkerState = L2_RD; // First access in SV39
2023-03-24 22:32:25 +00:00
else NextWalkerState = LEAF;
L2_RD: if (HPTWFaultM) NextWalkerState = FAULT;
else if (DCacheBusStallM) NextWalkerState = L2_RD;
2023-03-24 22:32:25 +00:00
else NextWalkerState = L1_ADR;
L1_ADR: if (HPTWFaultM) NextWalkerState = FAULT;
else if (InitialWalkerState == L1_ADR | ValidNonLeafPTE) NextWalkerState = L1_RD; // First access in SV32
2023-03-24 22:32:25 +00:00
else NextWalkerState = LEAF;
L1_RD: if (HPTWFaultM) NextWalkerState = FAULT;
else if (DCacheBusStallM) NextWalkerState = L1_RD;
2023-03-24 22:32:25 +00:00
else NextWalkerState = L0_ADR;
L0_ADR: if (HPTWFaultM) NextWalkerState = FAULT;
else if (ValidNonLeafPTE) NextWalkerState = L0_RD;
2023-03-24 22:32:25 +00:00
else NextWalkerState = LEAF;
L0_RD: if (HPTWFaultM) NextWalkerState = FAULT;
else if (DCacheBusStallM) NextWalkerState = L0_RD;
2023-03-24 22:32:25 +00:00
else NextWalkerState = LEAF;
LEAF: if (P.SVADU_SUPPORTED & HPTWUpdateDA) NextWalkerState = UPDATE_PTE;
2023-03-24 22:32:25 +00:00
else NextWalkerState = IDLE;
2024-06-19 19:02:56 +00:00
UPDATE_PTE: if (DCacheBusStallM) NextWalkerState = UPDATE_PTE;
2023-03-24 22:32:25 +00:00
else NextWalkerState = LEAF;
FAULT: NextWalkerState = IDLE;
2024-06-19 19:02:56 +00:00
default: NextWalkerState = IDLE; // Should never be reached
2023-03-24 22:32:25 +00:00
endcase // case (WalkerState)
assign IgnoreRequestTLB = (WalkerState == IDLE & TLBMissOrUpdateDA) |
//((WalkerState == L3_RD | WalkerState == L2_RD | WalkerState == L1_RD | WalkerState == L0_RD) & HPTWFaultM); // HPTWFaultM is hear because the hptw faults are delayed one cycle and we need to prevent the cache/bus from taking the operation. On the next cycle the CPU will trap.
(WalkerState != IDLE & HPTWFaultM);
assign ResetPTE = reset | (NextWalkerState == IDLE);
assign SelHPTW = WalkerState != IDLE;
assign HPTWStall = (WalkerState != IDLE & WalkerState != FAULT) | (WalkerState == IDLE & TLBMissOrUpdateDA);
2022-11-07 19:13:34 +00:00
// HTPW address/data/control muxing
// Once the walk is done and it is time to update the TLB we need to switch back
// to the orignal data virtual address.
assign SelHPTWAdr = SelHPTW & ~(DTLBWriteM | ITLBWriteF);
// multiplex the outputs to LSU
2024-06-19 19:02:56 +00:00
if (P.XLEN == 64) assign HPTWAdrExt = {{(P.XLEN+2-P.PA_BITS){1'b0}}, HPTWAdr}; // Extend to 66 bits
else assign HPTWAdrExt = HPTWAdr;
2022-11-07 19:13:34 +00:00
mux2 #(2) rwmux(MemRWM, HPTWRW, SelHPTW, PreLSURWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LSUFunct3M);
mux2 #(7) funct7mux(Funct7M, 7'b0, SelHPTW, LSUFunct7M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LSUAtomicM);
2023-05-24 21:12:41 +00:00
mux2 #(P.XLEN+2) lsupadrmux(IEUAdrExtM, HPTWAdrExt, SelHPTWAdr, IHAdrM);
2024-06-19 19:02:56 +00:00
if (P.SVADU_SUPPORTED)
2023-05-24 21:12:41 +00:00
mux2 #(P.XLEN) lsuwritedatamux(WriteDataM, PTE, SelHPTW, IHWriteDataM);
2022-11-13 18:27:48 +00:00
else assign IHWriteDataM = WriteDataM;
2022-11-07 19:13:34 +00:00
endmodule