Partial parameterization into mmu.

This commit is contained in:
Ross Thompson 2023-05-24 16:12:41 -05:00
parent 5f5f33787d
commit fcb1c63f5f
5 changed files with 130 additions and 135 deletions

View File

@ -170,7 +170,7 @@ module ifu import cvw::*; #(parameter cvw_t P) (
flopr #(1) StallMReg(.clk, .reset, .d(StallM), .q(StallMQ));
assign TLBFlush = sfencevmaM & ~StallMQ;
mmu #(.TLB_ENTRIES(P.ITLB_ENTRIES), .IMMU(1))
mmu #(.P(P), .TLB_ENTRIES(P.ITLB_ENTRIES), .IMMU(1))
immu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(1'b0),
.VAdr(PCFExt),

View File

@ -29,9 +29,7 @@
// and limitations under the License.
/////////////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module lsu (
module lsu import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
input logic StallM, FlushM, StallW, FlushW,
output logic LSUStallM, // LSU stalls pipeline during a multicycle operation
@ -46,17 +44,17 @@ module lsu (
output logic DCacheMiss, // D cache miss for performance counters
output logic DCacheAccess, // D cache memory access for performance counters
// address and write data
input logic [`XLEN-1:0] IEUAdrE, // Execution stage memory address
output logic [`XLEN-1:0] IEUAdrM, // Memory stage memory address
input logic [`XLEN-1:0] WriteDataM, // Write data from IEU
output logic [`LLEN-1:0] ReadDataW, // Read data to IEU or FPU
input logic [P.XLEN-1:0] IEUAdrE, // Execution stage memory address
output logic [P.XLEN-1:0] IEUAdrM, // Memory stage memory address
input logic [P.XLEN-1:0] WriteDataM, // Write data from IEU
output logic [P.LLEN-1:0] ReadDataW, // Read data to IEU or FPU
// cpu privilege
input logic [1:0] PrivilegeModeW, // Current privilege mode
input logic BigEndianM, // Swap byte order to big endian
input logic sfencevmaM, // Virtual memory address fence, invalidate TLB entries
output logic DCacheStallM, // D$ busy with multicycle operation
// fpu
input logic [`FLEN-1:0] FWriteDataM, // Write data from FPU
input logic [P.FLEN-1:0] FWriteDataM, // Write data from FPU
input logic FpLoadStoreM, // Selects FPU as store for write data
// faults
output logic LoadPageFaultM, StoreAmoPageFaultM, // Page fault exceptions
@ -67,34 +65,34 @@ module lsu (
output logic StoreAmoMisalignedFaultM, // Store or AMO address misaligned fault
output logic StoreAmoAccessFaultM, // Store or AMO access fault
// connect to ahb
output logic [`PA_BITS-1:0] LSUHADDR, // Bus address from LSU to EBU
input logic [`XLEN-1:0] HRDATA, // Bus read data from LSU to EBU
output logic [`XLEN-1:0] LSUHWDATA, // Bus write data from LSU to EBU
output logic [P.PA_BITS-1:0] LSUHADDR, // Bus address from LSU to EBU
input logic [P.XLEN-1:0] HRDATA, // Bus read data from LSU to EBU
output logic [P.XLEN-1:0] LSUHWDATA, // Bus write data from LSU to EBU
input logic LSUHREADY, // Bus ready from LSU to EBU
output logic LSUHWRITE, // Bus write operation from LSU to EBU
output logic [2:0] LSUHSIZE, // Bus operation size from LSU to EBU
output logic [2:0] LSUHBURST, // Bus burst from LSU to EBU
output logic [1:0] LSUHTRANS, // Bus transaction type from LSU to EBU
output logic [`XLEN/8-1:0] LSUHWSTRB, // Bus byte write enables from LSU to EBU
output logic [P.XLEN/8-1:0] LSUHWSTRB, // Bus byte write enables from LSU to EBU
// page table walker
input logic [`XLEN-1:0] SATP_REGW, // SATP (supervisor address translation and protection) CSR
input logic [P.XLEN-1:0] SATP_REGW, // SATP (supervisor address translation and protection) CSR
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV, // STATUS CSR bits: make executable readable, supervisor user memory, machine privilege
input logic [1:0] STATUS_MPP, // Machine previous privilege mode
input logic [`XLEN-1:0] PCSpillF, // Fetch PC
input logic [P.XLEN-1:0] PCSpillF, // Fetch PC
input logic ITLBMissF, // ITLB miss causes HPTW (hardware pagetable walker) walk
input logic InstrUpdateDAF, // ITLB hit needs to update dirty or access bits
output logic [`XLEN-1:0] PTE, // Page table entry write to ITLB
output logic [P.XLEN-1:0] PTE, // Page table entry write to ITLB
output logic [1:0] PageType, // Type of page table entry to write to ITLB
output logic ITLBWriteF, // Write PTE to ITLB
output logic SelHPTW, // During a HPTW walk the effective privilege mode becomes S_MODE
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0], // PMP configuration from privileged unit
input var logic [`PA_BITS-3:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0] // PMP address from privileged unit
input var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0], // PMP configuration from privileged unit
input var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0] // PMP address from privileged unit
);
logic [`XLEN+1:0] IEUAdrExtM; // Memory stage address zero-extended to PA_BITS or XLEN whichever is longer
logic [`XLEN+1:0] IEUAdrExtE; // Execution stage address zero-extended to PA_BITS or XLEN whichever is longer
logic [`PA_BITS-1:0] PAdrM; // Physical memory address
logic [`XLEN+1:0] IHAdrM; // Either IEU or HPTW memory address
logic [P.XLEN+1:0] IEUAdrExtM; // Memory stage address zero-extended to PA_BITS or XLEN whichever is longer
logic [P.XLEN+1:0] IEUAdrExtE; // Execution stage address zero-extended to PA_BITS or XLEN whichever is longer
logic [P.PA_BITS-1:0] PAdrM; // Physical memory address
logic [P.XLEN+1:0] IHAdrM; // Either IEU or HPTW memory address
logic [1:0] PreLSURWM; // IEU or HPTW Read/Write signal
logic [1:0] LSURWM; // IEU or HPTW Read/Write signal gated by LR/SC
@ -111,19 +109,19 @@ module lsu (
logic BusCommittedM; // Bus memory operation in flight, delay interrupts
logic DCacheCommittedM; // D$ memory operation started, delay interrupts
logic [`LLEN-1:0] DTIMReadDataWordM; // DTIM read data
logic [`LLEN-1:0] DCacheReadDataWordM; // D$ read data
logic [`LLEN-1:0] ReadDataWordMuxM; // DTIM or D$ read data
logic [`LLEN-1:0] LittleEndianReadDataWordM; // Endian-swapped read data
logic [`LLEN-1:0] ReadDataWordM; // Read data before subword selection
logic [`LLEN-1:0] ReadDataM; // Final read data
logic [P.LLEN-1:0] DTIMReadDataWordM; // DTIM read data
logic [P.LLEN-1:0] DCacheReadDataWordM; // D$ read data
logic [P.LLEN-1:0] ReadDataWordMuxM; // DTIM or D$ read data
logic [P.LLEN-1:0] LittleEndianReadDataWordM; // Endian-swapped read data
logic [P.LLEN-1:0] ReadDataWordM; // Read data before subword selection
logic [P.LLEN-1:0] ReadDataM; // Final read data
logic [`XLEN-1:0] IHWriteDataM; // IEU or HPTW write data
logic [`XLEN-1:0] IMAWriteDataM; // IEU, HPTW, or AMO write data
logic [`LLEN-1:0] IMAFWriteDataM; // IEU, HPTW, AMO, or FPU write data
logic [`LLEN-1:0] LittleEndianWriteDataM; // Ending-swapped write data
logic [`LLEN-1:0] LSUWriteDataM; // Final write data
logic [(`LLEN-1)/8:0] ByteMaskM; // Selects which bytes within a word to write
logic [P.XLEN-1:0] IHWriteDataM; // IEU or HPTW write data
logic [P.XLEN-1:0] IMAWriteDataM; // IEU, HPTW, or AMO write data
logic [P.LLEN-1:0] IMAFWriteDataM; // IEU, HPTW, AMO, or FPU write data
logic [P.LLEN-1:0] LittleEndianWriteDataM; // Ending-swapped write data
logic [P.LLEN-1:0] LSUWriteDataM; // Final write data
logic [(P.LLEN-1)/8:0] ByteMaskM; // Selects which bytes within a word to write
logic DTLBMissM; // DTLB miss causes HPTW walk
logic DTLBWriteM; // Writes PTE and PageType to DTLB
@ -140,7 +138,7 @@ module lsu (
// Zero-extend address to 34 bits for XLEN=32
/////////////////////////////////////////////////////////////////////////////////////////////
flopenrc #(`XLEN) AddressMReg(clk, reset, FlushM, ~StallM, IEUAdrE, IEUAdrM);
flopenrc #(P.XLEN) AddressMReg(clk, reset, FlushM, ~StallM, IEUAdrE, IEUAdrM);
assign IEUAdrExtM = {2'b00, IEUAdrM};
assign IEUAdrExtE = {2'b00, IEUAdrE};
@ -149,12 +147,12 @@ module lsu (
// MMU include PMP and is needed if any privileged supported
/////////////////////////////////////////////////////////////////////////////////////////////
if(`VIRTMEM_SUPPORTED) begin : hptw
hptw hptw(.clk, .reset, .MemRWM, .AtomicM, .ITLBMissF, .ITLBWriteF,
if(P.VIRTMEM_SUPPORTED) begin : hptw
hptw #(P) hptw(.clk, .reset, .MemRWM, .AtomicM, .ITLBMissF, .ITLBWriteF,
.DTLBMissM, .DTLBWriteM, .InstrUpdateDAF, .DataUpdateDAM,
.FlushW, .DCacheStallM, .SATP_REGW, .PCSpillF,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .PrivilegeModeW,
.ReadDataM(ReadDataM[`XLEN-1:0]), // ReadDataM is LLEN, but HPTW only needs XLEN
.ReadDataM(ReadDataM[P.XLEN-1:0]), // ReadDataM is LLEN, but HPTW only needs XLEN
.WriteDataM, .Funct3M, .LSUFunct3M, .Funct7M, .LSUFunct7M,
.IEUAdrExtM, .PTE, .IHWriteDataM, .PageType, .PreLSURWM, .LSUAtomicM,
.IHAdrM, .HPTWStall, .SelHPTW,
@ -184,10 +182,10 @@ module lsu (
/////////////////////////////////////////////////////////////////////////////////////////////
// MMU and misalignment fault logic required if privileged unit exists
/////////////////////////////////////////////////////////////////////////////////////////////
if(`ZICSR_SUPPORTED == 1) begin : dmmu
if(P.ZICSR_SUPPORTED == 1) begin : dmmu
logic DisableTranslation; // During HPTW walk or D$ flush disable virtual memory address translation
assign DisableTranslation = SelHPTW | FlushDCacheM;
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
mmu #(.P(P), .TLB_ENTRIES(P.DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation, .VAdr(IHAdrM), .Size(LSUFunct3M[1:0]),
.PTE, .PageTypeWriteVal(PageType), .TLBWrite(DTLBWriteM), .TLBFlush(sfencevmaM),
@ -204,9 +202,9 @@ module lsu (
end else begin // No MMU, so no PMA/page faults and no address translation
assign {DTLBMissM, LSULoadAccessFaultM, LSUStoreAmoAccessFaultM, LoadMisalignedFaultM, StoreAmoMisalignedFaultM} = '0;
assign {LoadPageFaultM, StoreAmoPageFaultM} = '0;
assign PAdrM = IHAdrM[`PA_BITS-1:0];
assign PAdrM = IHAdrM[P.PA_BITS-1:0];
assign CacheableM = 1'b1;
assign SelDTIM = `DTIM_SUPPORTED & ~`BUS_SUPPORTED; // if no PMA then select dtim if there is a DTIM. If there is
assign SelDTIM = P.DTIM_SUPPORTED & ~P.BUS_SUPPORTED; // if no PMA then select dtim if there is a DTIM. If there is
// a bus then this is always 0. Cannot have both without PMA.
end
@ -222,31 +220,31 @@ module lsu (
// Discard memory request on pipeline flush
assign IgnoreRequest = IgnoreRequestTLB | FlushW;
if (`DTIM_SUPPORTED) begin : dtim
logic [`PA_BITS-1:0] DTIMAdr;
if (P.DTIM_SUPPORTED) begin : dtim
logic [P.PA_BITS-1:0] DTIMAdr;
logic [1:0] DTIMMemRWM;
// The DTIM uses untranslated addresses, so it is not compatible with virtual memory.
mux2 #(`PA_BITS) DTIMAdrMux(IEUAdrExtE[`PA_BITS-1:0], IEUAdrExtM[`PA_BITS-1:0], MemRWM[0], DTIMAdr);
mux2 #(P.PA_BITS) DTIMAdrMux(IEUAdrExtE[P.PA_BITS-1:0], IEUAdrExtM[P.PA_BITS-1:0], MemRWM[0], DTIMAdr);
assign DTIMMemRWM = SelDTIM & ~IgnoreRequestTLB ? LSURWM : '0;
// **** fix ReadDataWordM to be LLEN. ByteMask is wrong length.
// **** create config to support DTIM with floating point.
dtim dtim(.clk, .ce(~GatedStallW), .MemRWM(DTIMMemRWM),
.DTIMAdr, .FlushW, .WriteDataM(LSUWriteDataM),
.ReadDataWordM(DTIMReadDataWordM[`XLEN-1:0]), .ByteMaskM(ByteMaskM[`XLEN/8-1:0]));
.ReadDataWordM(DTIMReadDataWordM[P.XLEN-1:0]), .ByteMaskM(ByteMaskM[P.XLEN/8-1:0]));
end else begin
end
if (`BUS_SUPPORTED) begin : bus
if(`DCACHE_SUPPORTED) begin : dcache
localparam LLENWORDSPERLINE = `DCACHE_LINELENINBITS/`LLEN; // Number of LLEN words in cacheline
if (P.BUS_SUPPORTED) begin : bus
if(P.DCACHE_SUPPORTED) begin : dcache
localparam LLENWORDSPERLINE = P.DCACHE_LINELENINBITS/P.LLEN; // Number of LLEN words in cacheline
localparam LLENLOGBWPL = $clog2(LLENWORDSPERLINE); // Log2 of ^
localparam BEATSPERLINE = `DCACHE_LINELENINBITS/`AHBW; // Number of AHBW words (beats) in cacheline
localparam BEATSPERLINE = P.DCACHE_LINELENINBITS/P.AHBW; // Number of AHBW words (beats) in cacheline
localparam AHBWLOGBWPL = $clog2(BEATSPERLINE); // Log2 of ^
localparam LINELEN = `DCACHE_LINELENINBITS; // Number of bits in cacheline
localparam LLENPOVERAHBW = `LLEN / `AHBW; // Number of AHB beats in a LLEN word. AHBW cannot be larger than LLEN. (implementation limitation)
localparam LINELEN = P.DCACHE_LINELENINBITS; // Number of bits in cacheline
localparam LLENPOVERAHBW = P.LLEN / P.AHBW; // Number of AHB beats in a LLEN word. AHBW cannot be larger than LLEN. (implementation limitation)
logic [LINELEN-1:0] FetchBuffer; // Temporary buffer to hold partially fetched cacheline
logic [`PA_BITS-1:0] DCacheBusAdr; // Cacheline address to fetch or writeback.
logic [P.PA_BITS-1:0] DCacheBusAdr; // Cacheline address to fetch or writeback.
logic [AHBWLOGBWPL-1:0] BeatCount; // Position within a cacheline. ahbcacheinterface to cache
logic DCacheBusAck; // ahbcacheinterface completed fetch or writeback
logic SelBusBeat; // ahbcacheinterface selects postion in cacheline with BeatCount
@ -263,8 +261,8 @@ module lsu (
assign CacheAtomicM = CacheableM & ~IgnoreRequestTLB & ~SelDTIM ? LSUAtomicM : '0;
assign FlushDCache = FlushDCacheM & ~(IgnoreRequestTLB | SelHPTW);
cache #(.PA_BITS(`PA_BITS), .XLEN(`XLEN), .LINELEN(`DCACHE_LINELENINBITS), .NUMLINES(`DCACHE_WAYSIZEINBYTES*8/LINELEN),
.NUMWAYS(`DCACHE_NUMWAYS), .LOGBWPL(LLENLOGBWPL), .WORDLEN(`LLEN), .MUXINTERVAL(`LLEN), .READ_ONLY_CACHE(0)) dcache(
cache #(.PA_BITS(P.PA_BITS), .XLEN(P.XLEN), .LINELEN(P.DCACHE_LINELENINBITS), .NUMLINES(P.DCACHE_WAYSIZEINBYTES*8/LINELEN),
.NUMWAYS(P.DCACHE_NUMWAYS), .LOGBWPL(LLENLOGBWPL), .WORDLEN(P.LLEN), .MUXINTERVAL(P.LLEN), .READ_ONLY_CACHE(0)) dcache(
.clk, .reset, .Stall(GatedStallW), .SelBusBeat, .FlushStage(FlushW), .CacheRW(CacheRWM), .CacheAtomic(CacheAtomicM),
.FlushCache(FlushDCache), .NextSet(IEUAdrE[11:0]), .PAdr(PAdrM),
.ByteMask(ByteMaskM), .BeatCount(BeatCount[AHBWLOGBWPL-1:AHBWLOGBWPL-LLENLOGBWPL]),
@ -275,7 +273,7 @@ module lsu (
.FetchBuffer, .CacheBusRW,
.CacheBusAck(DCacheBusAck), .InvalidateCache(1'b0));
ahbcacheinterface #(.AHBW(`AHBW), .LLEN(`LLEN), .PA_BITS(`PA_BITS), .BEATSPERLINE(BEATSPERLINE), .AHBWLOGBWPL(AHBWLOGBWPL), .LINELEN(LINELEN), .LLENPOVERAHBW(LLENPOVERAHBW), .READ_ONLY_CACHE(0)) ahbcacheinterface(
ahbcacheinterface #(.AHBW(P.AHBW), .LLEN(P.LLEN), .PA_BITS(P.PA_BITS), .BEATSPERLINE(BEATSPERLINE), .AHBWLOGBWPL(AHBWLOGBWPL), .LINELEN(LINELEN), .LLENPOVERAHBW(LLENPOVERAHBW), .READ_ONLY_CACHE(0)) ahbcacheinterface(
.HCLK(clk), .HRESETn(~reset), .Flush(FlushW),
.HRDATA, .HWDATA(LSUHWDATA), .HWSTRB(LSUHWSTRB),
.HSIZE(LSUHSIZE), .HBURST(LSUHBURST), .HTRANS(LSUHTRANS), .HWRITE(LSUHWRITE), .HREADY(LSUHREADY),
@ -289,25 +287,25 @@ module lsu (
// Uncache bus access may be smaller width than LLEN. Duplicate LLENPOVERAHBW times.
// *** DTIMReadDataWordM should be increased to LLEN.
// pma should generate exception for LLEN read to periph.
mux3 #(`LLEN) UnCachedDataMux(.d0(DCacheReadDataWordM), .d1({LLENPOVERAHBW{FetchBuffer[`XLEN-1:0]}}),
.d2({{`LLEN-`XLEN{1'b0}}, DTIMReadDataWordM[`XLEN-1:0]}),
mux3 #(P.LLEN) UnCachedDataMux(.d0(DCacheReadDataWordM), .d1({LLENPOVERAHBW{FetchBuffer[P.XLEN-1:0]}}),
.d2({{P.LLEN-P.XLEN{1'b0}}, DTIMReadDataWordM[P.XLEN-1:0]}),
.s({SelDTIM, ~(CacheableOrFlushCacheM)}), .y(ReadDataWordMuxM));
end else begin : passthrough // No Cache, use simple ahbinterface instad of ahbcacheinterface
logic [1:0] BusRW; // Non-DTIM memory access, ignore cacheableM
logic [`XLEN-1:0] FetchBuffer;
logic [P.XLEN-1:0] FetchBuffer;
assign BusRW = ~IgnoreRequestTLB & ~SelDTIM ? LSURWM : '0;
assign LSUHADDR = PAdrM;
assign LSUHSIZE = LSUFunct3M;
ahbinterface #(`XLEN, 1) ahbinterface(.HCLK(clk), .HRESETn(~reset), .Flush(FlushW), .HREADY(LSUHREADY),
ahbinterface #(P.XLEN, 1) ahbinterface(.HCLK(clk), .HRESETn(~reset), .Flush(FlushW), .HREADY(LSUHREADY),
.HRDATA(HRDATA), .HTRANS(LSUHTRANS), .HWRITE(LSUHWRITE), .HWDATA(LSUHWDATA),
.HWSTRB(LSUHWSTRB), .BusRW, .ByteMask(ByteMaskM), .WriteData(LSUWriteDataM),
.Stall(GatedStallW), .BusStall, .BusCommitted(BusCommittedM), .FetchBuffer(FetchBuffer));
// Mux between the 2 sources of read data, 0: Bus, 1: DTIM
if(`DTIM_SUPPORTED) mux2 #(`XLEN) ReadDataMux2(FetchBuffer, DTIMReadDataWordM, SelDTIM, ReadDataWordMuxM);
else assign ReadDataWordMuxM = FetchBuffer[`XLEN-1:0];
if(P.DTIM_SUPPORTED) mux2 #(P.XLEN) ReadDataMux2(FetchBuffer, DTIMReadDataWordM, SelDTIM, ReadDataWordMuxM);
else assign ReadDataWordMuxM = FetchBuffer[P.XLEN-1:0];
assign LSUHBURST = 3'b0;
assign {DCacheStallM, DCacheCommittedM, DCacheMiss, DCacheAccess} = '0;
end
@ -322,16 +320,16 @@ module lsu (
/////////////////////////////////////////////////////////////////////////////////////////////
// Atomic operations
/////////////////////////////////////////////////////////////////////////////////////////////
if (`A_SUPPORTED) begin:atomic
atomic atomic(.clk, .reset, .StallW, .ReadDataM(ReadDataM[`XLEN-1:0]), .IHWriteDataM, .PAdrM,
if (P.A_SUPPORTED) begin:atomic
atomic atomic(.clk, .reset, .StallW, .ReadDataM(ReadDataM[P.XLEN-1:0]), .IHWriteDataM, .PAdrM,
.LSUFunct7M, .LSUFunct3M, .LSUAtomicM, .PreLSURWM, .IgnoreRequest,
.IMAWriteDataM, .SquashSCW, .LSURWM);
end else begin:lrsc
assign SquashSCW = 0; assign LSURWM = PreLSURWM; assign IMAWriteDataM = IHWriteDataM;
end
if (`F_SUPPORTED)
mux2 #(`LLEN) datamux({{{`LLEN-`XLEN}{1'b0}}, IMAWriteDataM}, FWriteDataM, FpLoadStoreM, IMAFWriteDataM);
if (P.F_SUPPORTED)
mux2 #(P.LLEN) datamux({{{P.LLEN-P.XLEN}{1'b0}}, IMAWriteDataM}, FWriteDataM, FpLoadStoreM, IMAFWriteDataM);
else assign IMAFWriteDataM = IMAWriteDataM;
/////////////////////////////////////////////////////////////////////////////////////////////
@ -342,13 +340,13 @@ module lsu (
subwordwrite subwordwrite(.LSUFunct3M, .IMAFWriteDataM, .LittleEndianWriteDataM);
// Compute byte masks
swbytemask #(`LLEN) swbytemask(.Size(LSUFunct3M), .Adr(PAdrM[$clog2(`LLEN/8)-1:0]), .ByteMask(ByteMaskM));
swbytemask #(P.LLEN) swbytemask(.Size(LSUFunct3M), .Adr(PAdrM[$clog2(P.LLEN/8)-1:0]), .ByteMask(ByteMaskM));
/////////////////////////////////////////////////////////////////////////////////////////////
// MW Pipeline Register
/////////////////////////////////////////////////////////////////////////////////////////////
flopen #(`LLEN) ReadDataMWReg(clk, ~StallW, ReadDataM, ReadDataW);
flopen #(P.LLEN) ReadDataMWReg(clk, ~StallW, ReadDataM, ReadDataW);
/////////////////////////////////////////////////////////////////////////////////////////////
// Big Endian Byte Swapper
@ -356,9 +354,9 @@ module lsu (
// swap the bytes when read from big-endian memory
/////////////////////////////////////////////////////////////////////////////////////////////
if (`BIGENDIAN_SUPPORTED) begin:endian
endianswap #(`LLEN) storeswap(.BigEndianM, .a(LittleEndianWriteDataM), .y(LSUWriteDataM));
endianswap #(`LLEN) loadswap(.BigEndianM, .a(ReadDataWordMuxM), .y(LittleEndianReadDataWordM));
if (P.BIGENDIAN_SUPPORTED) begin:endian
endianswap #(P.LLEN) storeswap(.BigEndianM, .a(LittleEndianWriteDataM), .y(LSUWriteDataM));
endianswap #(P.LLEN) loadswap(.BigEndianM, .a(ReadDataWordMuxM), .y(LittleEndianReadDataWordM));
end else begin
assign LSUWriteDataM = LittleEndianWriteDataM;
assign LittleEndianReadDataWordM = ReadDataWordMuxM;

View File

@ -29,20 +29,18 @@
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module hptw (
module hptw import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table
input logic [`XLEN-1:0] PCSpillF, // addresses to translate
input logic [`XLEN+1:0] IEUAdrExtM, // addresses to translate
input logic [P.XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table
input logic [P.XLEN-1:0] PCSpillF, // addresses to translate
input logic [P.XLEN+1:0] IEUAdrExtM, // addresses to translate
input logic [1:0] MemRWM, AtomicM,
// system status
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] ReadDataM, // page table entry from LSU
input logic [`XLEN-1:0] WriteDataM,
input logic [P.XLEN-1:0] ReadDataM, // page table entry from LSU
input logic [P.XLEN-1:0] WriteDataM,
input logic DCacheStallM, // stall from LSU
input logic [2:0] Funct3M,
input logic [6:0] Funct7M,
@ -51,12 +49,12 @@ module hptw (
input logic FlushW,
input logic InstrUpdateDAF,
input logic DataUpdateDAM,
output logic [`XLEN-1:0] PTE, // page table entry to TLBs
output logic [P.XLEN-1:0] PTE, // page table entry to TLBs
output logic [1:0] PageType, // page type to TLBs
output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry
output logic [1:0] PreLSURWM,
output logic [`XLEN+1:0] IHAdrM,
output logic [`XLEN-1:0] IHWriteDataM,
output logic [P.XLEN+1:0] IHAdrM,
output logic [P.XLEN-1:0] IHWriteDataM,
output logic [1:0] LSUAtomicM,
output logic [2:0] LSUFunct3M,
output logic [6:0] LSUFunct7M,
@ -74,8 +72,8 @@ module hptw (
LEAF, IDLE, UPDATE_PTE} statetype;
logic DTLBWalk; // register TLBs translation miss requests
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`PPN_BITS-1:0] CurrentPPN;
logic [P.PPN_BITS-1:0] BasePageTablePPN;
logic [P.PPN_BITS-1:0] CurrentPPN;
logic Executable, Writable, Readable, Valid, PTE_U;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
@ -83,18 +81,18 @@ module hptw (
logic TLBMiss;
logic PRegEn;
logic [1:0] NextPageType;
logic [`SVMODE_BITS-1:0] SvMode;
logic [`XLEN-1:0] TranslationVAdr;
logic [`XLEN-1:0] NextPTE;
logic [P.SVMODE_BITS-1:0] SvMode;
logic [P.XLEN-1:0] TranslationVAdr;
logic [P.XLEN-1:0] NextPTE;
logic UpdatePTE;
logic HPTWUpdateDA;
logic [`PA_BITS-1:0] HPTWReadAdr;
logic [P.PA_BITS-1:0] HPTWReadAdr;
logic SelHPTWAdr;
logic [`XLEN+1:0] HPTWAdrExt;
logic [P.XLEN+1:0] HPTWAdrExt;
logic ITLBMissOrUpdateDAF;
logic DTLBMissOrUpdateDAM;
logic LSUAccessFaultM;
logic [`PA_BITS-1:0] HPTWAdr;
logic [P.PA_BITS-1:0] HPTWAdr;
logic [1:0] HPTWRW;
logic [2:0] HPTWSize; // 32 or 64 bit access
statetype WalkerState, NextWalkerState, InitialWalkerState;
@ -119,18 +117,18 @@ module hptw (
assign HPTWInstrAccessFaultF = TakeHPTWFaultDelay ? HPTWInstrAccessFaultDelay : 1'b0;
// Extract bits from CSRs and inputs
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign SvMode = SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[P.PPN_BITS-1:0];
assign TLBMiss = (DTLBMissOrUpdateDAM | ITLBMissOrUpdateDAF);
// Determine which address to translate
mux2 #(`XLEN) vadrmux(PCSpillF, IEUAdrExtM[`XLEN-1:0], DTLBWalk, TranslationVAdr);
assign CurrentPPN = PTE[`PPN_BITS+9:10];
mux2 #(P.XLEN) vadrmux(PCSpillF, IEUAdrExtM[P.XLEN-1:0], DTLBWalk, TranslationVAdr);
assign CurrentPPN = PTE[P.PPN_BITS+9:10];
// State flops
flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissOrUpdateDAM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB)
assign PRegEn = HPTWRW[1] & ~DCacheStallM | UpdatePTE;
flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, NextPTE, PTE); // Capture page table entry from data cache
flopenr #(P.XLEN) PTEReg(clk, reset, PRegEn, NextPTE, PTE); // Capture page table entry from data cache
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
@ -140,7 +138,7 @@ module hptw (
assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = ValidPTE & ~LeafPTE;
if(`SVADU_SUPPORTED) begin : hptwwrites
if(P.SVADU_SUPPORTED) begin : hptwwrites
logic ReadAccess, WriteAccess;
logic InvalidRead, InvalidWrite, InvalidOp;
logic UpperBitsUnequal;
@ -148,18 +146,18 @@ module hptw (
logic [1:0] EffectivePrivilegeMode;
logic ImproperPrivilege;
logic SaveHPTWAdr, SelHPTWWriteAdr;
logic [`PA_BITS-1:0] HPTWWriteAdr;
logic [P.PA_BITS-1:0] HPTWWriteAdr;
logic SetDirty;
logic Dirty, Accessed;
logic [`XLEN-1:0] AccessedPTE;
logic [P.XLEN-1:0] AccessedPTE;
assign AccessedPTE = {PTE[`XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
mux2 #(`XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE);
flopenr #(`PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr);
assign AccessedPTE = {PTE[P.XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
mux2 #(P.XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE);
flopenr #(P.PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr);
assign SaveHPTWAdr = WalkerState == L0_ADR;
assign SelHPTWWriteAdr = UpdatePTE | HPTWRW[0];
mux2 #(`PA_BITS) HPTWWriteAdrMux(HPTWReadAdr, HPTWWriteAdr, SelHPTWWriteAdr, HPTWAdr);
mux2 #(P.PA_BITS) HPTWWriteAdrMux(HPTWReadAdr, HPTWWriteAdr, SelHPTWWriteAdr, HPTWAdr);
assign {Dirty, Accessed} = PTE[7:6];
assign WriteAccess = MemRWM[0]; // implies | (|AtomicM);
@ -167,11 +165,11 @@ module hptw (
assign ReadAccess = MemRWM[1];
assign EffectivePrivilegeMode = DTLBWalk ? (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW) : PrivilegeModeW; // DTLB uses MPP mode when MPRV is 1
assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == `S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk));
assign ImproperPrivilege = ((EffectivePrivilegeMode == P.U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == P.S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk));
// Check for page faults
vm64check vm64check(.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]), .VAdr(TranslationVAdr),
vm64check vm64check(.SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]), .VAdr(TranslationVAdr),
.SV39Mode(), .UpperBitsUnequal);
assign InvalidRead = ReadAccess & ~Readable & (~STATUS_MXR | ~Executable);
assign InvalidWrite = WriteAccess & ~Writable;
@ -212,16 +210,16 @@ module hptw (
endcase
// HPTWAdr muxing
if (`XLEN==32) begin // RV32
if (P.XLEN==32) begin // RV32
logic [9:0] VPN;
logic [`PPN_BITS-1:0] PPN;
logic [P.PPN_BITS-1:0] PPN;
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
assign HPTWReadAdr = {PPN, VPN, 2'b00};
assign HPTWSize = 3'b010;
end else begin // RV64
logic [8:0] VPN;
logic [`PPN_BITS-1:0] PPN;
logic [P.PPN_BITS-1:0] PPN;
always_comb
case (WalkerState) // select VPN field based on HPTW state
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
@ -230,19 +228,19 @@ module hptw (
default: VPN = TranslationVAdr[20:12];
endcase
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
(SvMode != `SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
(SvMode != P.SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
assign HPTWReadAdr = {PPN, VPN, 3'b000};
assign HPTWSize = 3'b011;
end
// Initial state and misalignment for RV32/64
if (`XLEN == 32) begin
if (P.XLEN == 32) begin
assign InitialWalkerState = L1_ADR;
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
assign Misaligned = ((WalkerState == L0_ADR) & MegapageMisaligned);
end else begin
logic GigapageMisaligned, TerapageMisaligned;
assign InitialWalkerState = (SvMode == `SV48) ? L3_ADR : L2_ADR;
assign InitialWalkerState = (SvMode == P.SV48) ? L3_ADR : L2_ADR;
assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0
@ -281,7 +279,7 @@ module hptw (
L0_RD: if (DCacheStallM) NextWalkerState = L0_RD;
else if(LSUAccessFaultM) NextWalkerState = IDLE;
else NextWalkerState = LEAF;
LEAF: if (`SVADU_SUPPORTED & HPTWUpdateDA) NextWalkerState = UPDATE_PTE;
LEAF: if (P.SVADU_SUPPORTED & HPTWUpdateDA) NextWalkerState = UPDATE_PTE;
else NextWalkerState = IDLE;
UPDATE_PTE: if(DCacheStallM) NextWalkerState = UPDATE_PTE;
else NextWalkerState = LEAF;
@ -293,8 +291,8 @@ module hptw (
assign HPTWAccessFaultDelay = HPTWLoadAccessFaultDelay | HPTWStoreAmoAccessFaultDelay | HPTWInstrAccessFaultDelay;
assign HPTWStall = (WalkerState != IDLE) | (WalkerState == IDLE & TLBMiss & ~(HPTWAccessFaultDelay));
assign ITLBMissOrUpdateDAF = ITLBMissF | (`SVADU_SUPPORTED & InstrUpdateDAF);
assign DTLBMissOrUpdateDAM = DTLBMissM | (`SVADU_SUPPORTED & DataUpdateDAM);
assign ITLBMissOrUpdateDAF = ITLBMissF | (P.SVADU_SUPPORTED & InstrUpdateDAF);
assign DTLBMissOrUpdateDAM = DTLBMissM | (P.SVADU_SUPPORTED & DataUpdateDAM);
// HTPW address/data/control muxing
@ -304,15 +302,15 @@ module hptw (
// always block interrupts when using the hardware page table walker.
// multiplex the outputs to LSU
if(`XLEN == 64) assign HPTWAdrExt = {{(`XLEN+2-`PA_BITS){1'b0}}, HPTWAdr}; // extend to 66 bits
if(P.XLEN == 64) assign HPTWAdrExt = {{(P.XLEN+2-P.PA_BITS){1'b0}}, HPTWAdr}; // extend to 66 bits
else assign HPTWAdrExt = HPTWAdr;
mux2 #(2) rwmux(MemRWM, HPTWRW, SelHPTW, PreLSURWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LSUFunct3M);
mux2 #(7) funct7mux(Funct7M, 7'b0, SelHPTW, LSUFunct7M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LSUAtomicM);
mux2 #(`XLEN+2) lsupadrmux(IEUAdrExtM, HPTWAdrExt, SelHPTWAdr, IHAdrM);
if(`SVADU_SUPPORTED)
mux2 #(`XLEN) lsuwritedatamux(WriteDataM, PTE, SelHPTW, IHWriteDataM);
mux2 #(P.XLEN+2) lsupadrmux(IEUAdrExtM, HPTWAdrExt, SelHPTWAdr, IHAdrM);
if(P.SVADU_SUPPORTED)
mux2 #(P.XLEN) lsuwritedatamux(WriteDataM, PTE, SelHPTW, IHWriteDataM);
else assign IHWriteDataM = WriteDataM;
endmodule

View File

@ -26,24 +26,23 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
module mmu import cvw::*; #(parameter cvw_t P,
parameter TLB_ENTRIES = 8, IMMU = 0) (
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW, // Current value of satp CSR (from privileged unit)
input logic [P.XLEN-1:0] SATP_REGW, // Current value of satp CSR (from privileged unit)
input logic STATUS_MXR, // Status CSR: make executable page readable
input logic STATUS_SUM, // Status CSR: Supervisor access to user memory
input logic STATUS_MPRV, // Status CSR: modify machine privilege
input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic DisableTranslation, // virtual address translation disabled during D$ flush and HPTW walk that use physical addresses
input logic [`XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW
input logic [P.XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW
input logic [1:0] Size, // access size: 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
input logic [`XLEN-1:0] PTE, // page table entry
input logic [P.XLEN-1:0] PTE, // page table entry
input logic [1:0] PageTypeWriteVal, // page type
input logic TLBWrite, // write TLB entry
input logic TLBFlush, // Invalidate all TLB entries
output logic [`PA_BITS-1:0] PhysicalAddress, // PAdr when no translation, or translated VAdr (TLBPAdr) when there is translation
output logic [P.PA_BITS-1:0] PhysicalAddress, // PAdr when no translation, or translated VAdr (TLBPAdr) when there is translation
output logic TLBMiss, // Miss TLB
output logic Cacheable, // PMA indicates memory address is cachable
output logic Idempotent, // PMA indicates memory address is idempotent
@ -55,11 +54,11 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
output logic LoadMisalignedFaultM, StoreAmoMisalignedFaultM, // misaligned fault sources
// PMA checker signals
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM, // access type
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0], // PMP configuration
input var logic [`PA_BITS-3:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0] // PMP addresses
input var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0], // PMP configuration
input var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0] // PMP addresses
);
logic [`PA_BITS-1:0] TLBPAdr; // physical address for TLB
logic [P.PA_BITS-1:0] TLBPAdr; // physical address for TLB
logic PMAInstrAccessFaultF; // Instruction access fault from PMA
logic PMPInstrAccessFaultF; // Instruction access fault from PMP
logic PMALoadAccessFaultM; // Load access fault from PMA
@ -73,15 +72,15 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
logic ReadNoAmoAccessM; // Read that is not part of atomic operation causes Load faults. Otherwise StoreAmo faults
// only instantiate TLB if Virtual Memory is supported
if (`VIRTMEM_SUPPORTED) begin:tlb
if (P.VIRTMEM_SUPPORTED) begin:tlb
logic ReadAccess, WriteAccess;
assign ReadAccess = ExecuteAccessF | ReadAccessM; // execute also acts as a TLB read. Execute and Read are never active for the same MMU, so safe to mix pipestages
assign WriteAccess = WriteAccessM;
tlb #(.TLB_ENTRIES(TLB_ENTRIES), .ITLB(IMMU)) tlb(
.clk, .reset,
.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]),
.SATP_ASID(SATP_REGW[`ASID_BASE+`ASID_BITS-1:`ASID_BASE]),
.VAdr(VAdr[`XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]),
.SATP_ASID(SATP_REGW[P.ASID_BASE+P.ASID_BITS-1:P.ASID_BASE]),
.VAdr(VAdr[P.XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .ReadAccess, .WriteAccess,
.DisableTranslation, .PTE, .PageTypeWriteVal,
.TLBWrite, .TLBFlush, .TLBPAdr, .TLBMiss, .TLBHit,
@ -96,7 +95,7 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
// If translation is occuring, select translated physical address from TLB
// the lower 12 bits are the page offset. These are never changed from the orginal
// non translated address.
mux2 #(`PA_BITS-12) addressmux(VAdr[`PA_BITS-1:12], TLBPAdr[`PA_BITS-1:12], Translate, PhysicalAddress[`PA_BITS-1:12]);
mux2 #(P.PA_BITS-12) addressmux(VAdr[P.PA_BITS-1:12], TLBPAdr[P.PA_BITS-1:12], Translate, PhysicalAddress[P.PA_BITS-1:12]);
assign PhysicalAddress[11:0] = VAdr[11:0];
///////////////////////////////////////////
@ -108,7 +107,7 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
.Cacheable, .Idempotent, .SelTIM,
.PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM);
if (`PMP_ENTRIES > 0) begin : pmp
if (P.PMP_ENTRIES > 0) begin : pmp
pmpchecker pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,

View File

@ -208,7 +208,7 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
.FCvtIntStallD, .LoadStallD, .MDUStallD, .CSRRdStallD, .PCSrcE,
.CSRReadM, .CSRWriteM, .PrivilegedM, .CSRWriteFenceM, .InvalidateICacheM, .StoreStallD);
lsu lsu(
lsu #(P) lsu(
.clk, .reset, .StallM, .FlushM, .StallW, .FlushW,
// CPU interface
.MemRWM, .Funct3M, .Funct7M(InstrM[31:25]), .AtomicM,