cvw/fpga
2022-12-30 10:51:35 -06:00
..
constraints Updated constraints to remove DivBusyE. 2022-12-30 10:51:35 -06:00
generator Updated fpga constraints. 2022-12-21 14:50:01 -06:00
sim Fpga simualtion files. 2021-10-11 10:24:40 -05:00
src Updated top level fpga file. 2022-11-18 11:10:45 -06:00
comport.setup Added comport.setup to remind how to configure com port for xilinx fpga. 2022-01-25 14:54:38 -06:00
debug_notes.org Modified FPGA to add additional signals to ILA. Created advanced trigger for ILA using vivado's tsm language. 2021-12-12 17:21:44 -06:00
README.md Renamed wally-pipelined to pipelined 2022-01-04 19:47:41 +00:00
trigger_issues.tsm Renamed wallypipelinedhart to wallypipelinedcore 2022-01-20 16:02:08 +00:00

The FPGA currently only targets the VCU118 board.

  • Build Process

cd generator make

  • Description

The generator makefile creates 4 IP blocks; proc_sys_reset, ddr4, axi_clock_converter, and ahblite_axi_bridge. Then it reads in the 4 IP blocks and builds wally. fpga/src/fpgaTop.v is the top level which instanciates wallypipelinedsoc.sv and the 4 IP blocks. The FPGA include and ILA (In logic analyzer) which provides the current instruction PCM, instrM, etc along with a large number of debuging signals.

  • Programming the flash card You'll need to write the linux image to the flash card. Use the convert2bin.py script in pipelined/linux-testgen/linux-testvectors/ to convert the ram.txt file from QEMU's preload to generate the binary. Then to copy sudo dd if=ram.bin of=.

  • Loading the FPGA

After the build process is complete about 2 hrs on an i9-7900x. Launch vivado's gui and open the WallyFPGA.xpr project file. Open the hardware manager under program and debug. Open target and then program with the bit file.

  • Test Run

Once the FPGA is programed the 3 MSB LEDs in the upper right corner provide status of the reset and ddr4 calibration. LED 7 should always be lit. LED 6 will light if the DDR4 is not calibrated. LED 6 will be lit once wally begins running.

Next the bootloader program will copy the flash card into the DDR4 memory. When this done the lower 5 LEDs will blink 5 times and then try to boot the program loaded in the DDR4 memory at physical address 0x8000_0000.

  • Connecting uart You'll need to connect both usb cables. The first connects the FPGA programer while the connect connects UART. UART is configured to use 57600 baud with no parity, 8 data bits, and 1 stop bit. sudo screen /dev/ttyUSB1 57600 should let you view the com port.