cvw/wally-pipelined/src/fpu/fma.sv

1045 lines
53 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
//
// Written: Katherine Parry, David Harris
// Modified: 6/23/2021
//
// Purpose: Floating point multiply-accumulate of configurable size
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
// `include "../../../config/rv64icfd/wally-config.vh"
module fma(
2021-07-24 18:59:57 +00:00
input logic clk,
input logic reset,
input logic FlushM, // flush the memory stage
input logic StallM, // stall memory stage
input logic FmtE, FmtM, // precision 1 = double 0 = single
input logic [2:0] FOpCtrlM, FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic XSgnE, YSgnE, ZSgnE, // input signs - execute stage
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // input exponents - execute stage
input logic [`NF:0] XManE, YManE, ZManE, // input mantissa - execute stage
input logic XSgnM, YSgnM, ZSgnM, // input signs - memory stage
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents - memory stage
input logic [`NF:0] XManM, YManM, ZManM, // input mantissa - memory stage
input logic XDenormE, YDenormE, ZDenormE, // is denorm
input logic XZeroE, YZeroE, ZZeroE, // is zero - execute stage
input logic XNaNM, YNaNM, ZNaNM, // is NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
input logic XInfM, YInfM, ZInfM, // is infinity
input logic [10:0] BiasE, // bias - depends on precison (max exponent/2)
output logic [`FLEN-1:0] FMAResM, // FMA result
output logic [4:0] FMAFlgM); // FMA flags
2021-07-24 18:59:57 +00:00
//fma/mult
// fmadd = ?000
// fmsub = ?001
// fnmsub = ?010 -(a*b)+c
// fnmadd = ?011 -(a*b)-c
// fmul = ?100
// {?, is mul, negate product, negate addend}
// signals transfered between pipeline stages
// logic [2*`NF+1:0] ProdManE, ProdManM;
// logic [3*`NF+5:0] AlignedAddendE, AlignedAddendM;
logic [3*`NF+5:0] SumE, SumM;
2021-07-24 18:59:57 +00:00
logic [`NE+1:0] ProdExpE, ProdExpM;
logic AddendStickyE, AddendStickyM;
logic KillProdE, KillProdM;
logic InvZE, InvZM;
logic NegSumE, NegSumM;
logic ZSgnEffE, ZSgnEffM;
logic PSgnE, PSgnM;
logic [8:0] NormCntE, NormCntM;
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
2021-07-22 17:04:47 +00:00
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
2021-07-14 21:56:49 +00:00
.ProdExpE, .AddendStickyE, .KillProdE);
2021-07-24 18:59:57 +00:00
// E/M pipeline registers
// flopenrc #(106) EMRegFma1(clk, reset, FlushM, ~StallM, ProdManE, ProdManM);
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
flopenrc #(15) EMRegFma4(clk, reset, FlushM, ~StallM,
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM});
2021-07-22 17:04:47 +00:00
fma2 fma2(.XSgnM, .YSgnM, .ZSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
.FOpCtrlM, .FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
2021-07-14 21:56:49 +00:00
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM,
.FMAResM, .FMAFlgM);
endmodule
module fma1(
input logic XSgnE, YSgnE, ZSgnE,
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
2021-07-22 17:04:47 +00:00
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format]
2021-07-24 18:59:57 +00:00
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [`NE-1:0] BiasE,
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtE, // precision 1 = double 0 = single
// output logic [2*`NF+1:0] ProdManE, // 1.X frac * 1.Y frac in U(2.2Nf) format
// output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
output logic AddendStickyE, // sticky bit that is calculated during alignment
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
output logic [3*`NF+5:0] SumE,
output logic NegSumE,
output logic InvZE,
output logic ZSgnEffE,
output logic PSgnE,
output logic [8:0] NormCntE
2021-07-14 21:56:49 +00:00
);
logic [`NE-1:0] Denorm;
logic [`NE-1:0] DenormXExp, DenormYExp; // Denormalized input value
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one if there is a denormal number
///////////////////////////////////////////////////////////////////////////////
// denormalized numbers have diffrent values depending on which precison it is.
assign Denorm = FmtE ? 1 : 897;
assign DenormXExp = XDenormE ? Denorm : XExpE;
assign DenormYExp = YDenormE ? Denorm : YExpE;
assign ProdExpE = (DenormXExp + DenormYExp - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
// Calculate the product's mantissa
2021-07-22 17:04:47 +00:00
// - Mantissa includes the assumed one. If the number is denormalized or zero, it does not have an assumed one.
// assign ProdManE = XManE * YManE;
mult mult(.XManE, .YManE, .ProdManE);
// ///////////////////////////////////////////////////////////////////////////////
// // Alignment shifter
// ///////////////////////////////////////////////////////////////////////////////
// // determine the shift count for alignment
// // - negitive means Z is larger, so shift Z left
// // - positive means the product is larger, so shift Z right
// // - Denormal numbers have an an exponent value of 1, however they are
// // represented with an exponent of 0. add one to the exponent if it is a denormal number
// assign AlignCnt = ProdExpE - (ZExpE + ({`NE-1{ZDenormE}}&Denorm));
// // Defualt Addition without shifting
// // | 54'b0 | 106'b(product) | 2'b0 |
// // |1'b0| addnend |
// // the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
// assign ZManPreShifted = {(`NF+3)'(0), ZManE, /*106*/(2*`NF+2)'(0)};
// always_comb
// begin
// // If the product is too small to effect the sum, kill the product
// // | 54'b0 | 106'b(product) | 2'b0 |
// // | addnend |
// if ($signed(AlignCnt) <= $signed(-(`NF+4))) begin
// KillProdE = 1;
// ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0};
// AddendStickyE = ~(XZeroE|YZeroE);
// // If the Addend is shifted left (negitive AlignCnt)
// // | 54'b0 | 106'b(product) | 2'b0 |
// // | addnend |
// end else if($signed(AlignCnt) <= $signed(0)) begin
// KillProdE = 0;
// ZManShifted = ZManPreShifted << -AlignCnt;
// AddendStickyE = |(ZManShifted[`NF-1:0]);
// // If the Addend is shifted right (positive AlignCnt)
// // | 54'b0 | 106'b(product) | 2'b0 |
// // | addnend |
// end else if ($signed(AlignCnt)<=$signed(2*`NF+1)) begin
// KillProdE = 0;
// ZManShifted = ZManPreShifted >> AlignCnt;
// AddendStickyE = |(ZManShifted[`NF-1:0]);
// // If the addend is too small to effect the addition
// // - The addend has to shift two past the end of the addend to be considered too small
// // - The 2 extra bits are needed for rounding
// // | 54'b0 | 106'b(product) | 2'b0 |
// // | addnend |
// end else begin
// KillProdE = 0;
// ZManShifted = 0;
// AddendStickyE = ~ZZeroE;
// end
// end
// assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
.AlignedAddendE, .AddendStickyE, .KillProdE);
// Calculate the product's sign
// Negate product's sign if FNMADD or FNMSUB
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
endmodule
2021-06-04 18:00:11 +00:00
module fma2(
2021-07-14 21:56:49 +00:00
input logic XSgnM, YSgnM, ZSgnM,
2021-07-21 02:04:21 +00:00
input logic [`NE-1:0] XExpM, YExpM, ZExpM,
2021-07-22 17:40:42 +00:00
input logic [`NF:0] XManM, YManM, ZManM,
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtM, // precision 1 = double 0 = single
// input logic [2*`NF+1:0] ProdManM, // 1.X frac * 1.Y frac
// input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition
2021-07-21 02:04:21 +00:00
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
2021-07-14 21:56:49 +00:00
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
input logic [3*`NF+5:0] SumM,
input logic NegSumM,
input logic InvZM,
input logic ZSgnEffM,
input logic PSgnM,
input logic [8:0] NormCntM,
2021-07-21 02:04:21 +00:00
output logic [`FLEN-1:0] FMAResM, // FMA final result
2021-07-02 16:40:58 +00:00
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
2021-07-24 18:59:57 +00:00
logic [`NF-1:0] ResultFrac; // Result fraction
logic [`NE-1:0] ResultExp; // Result exponent
logic ResultSgn; // Result sign
// logic PSgn; // product sign
// logic [2*`NF+1:0] ProdMan2; // product being added
// logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
// logic [3*`NF+5:0] Sum; // positive sum
// logic [3*`NF+6:0] PreSum; // possibly negitive sum
2021-07-24 18:59:57 +00:00
logic [`NE+1:0] SumExp; // exponent of the normalized sum
// logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
// logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1
2021-07-24 18:59:57 +00:00
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [`NF+2:0] NormSum; // normalized sum
// logic [3*`NF+5:0] SumShifted; // sum shifted for normalization
// logic [8:0] NormCnt; // output of the leading zero detector //***change this later
2021-07-24 18:59:57 +00:00
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
// logic NegSum; // is the sum negitive
// logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
2021-07-24 18:59:57 +00:00
logic ResultDenorm; // is the result denormalized
logic Sticky, UfSticky; // Sticky bit
2021-07-24 18:59:57 +00:00
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
logic UfPlus1, UfCalcPlus1; // do you add one (for determining underflow flag)
logic Invalid,Underflow,Overflow,Inexact; // flags
// logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
// logic SubBySmallNum; // was there supposed to be a subtraction by a small number
2021-07-21 02:04:21 +00:00
logic [`FLEN-1:0] Addend; // value to add (Z or zero)
logic ZeroSgn; // the result's sign if the sum is zero
logic ResultSgnTmp; // the result's sign assuming the result is not zero
logic Guard, Round, LSBNormSum; // bits needed to determine rounding
logic UfGuard, UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
// logic [`NE+1:0] MaxExp; // maximum value of the exponent
// logic [`NE+1:0] FracLen; // length of the fraction
logic SigNaN; // is an input a signaling NaN
2021-07-02 16:40:58 +00:00
logic UnderflowFlag; // Underflow singal used in FMAFlgM (used to avoid a circular depencency)
2021-07-21 02:04:21 +00:00
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
//logic ZSgnEffM;
2021-07-14 21:56:49 +00:00
// ///////////////////////////////////////////////////////////////////////////////
// // Addition
// ///////////////////////////////////////////////////////////////////////////////
// // Negate Z when doing one of the following opperations:
// // -prod + Z
// // prod - Z
// assign ZSgnEffM = ZSgnM^FOpCtrlM[0]; // Swap sign of Z for subtract
// assign InvZ = ZSgnEffM ^ PSgn;
// // Choose an inverted or non-inverted addend - the one is added later
// assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
// // Kill the product if the product is too small to effect the addition (determined in fma1.sv)
// assign ProdMan2 = KillProdM ? 0 : ProdManM;
// // Do the addition
// // - add one to negate if the added was inverted
// // - the 2 extra bits at the begining and end are needed for rounding
// assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0} + InvZ;
// // Is the sum negitive
// assign NegSum = PreSum[3*`NF+6];
// // If the sum is negitive, negate the sum.
// assign Sum = NegSum ? -PreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
// ///////////////////////////////////////////////////////////////////////////////
// // Normalization
// ///////////////////////////////////////////////////////////////////////////////
// // Determine if the sum is zero
// assign SumZero = ~(|Sum);
// // determine the length of the fraction based on precision
// assign FracLen = FmtM ? `NF : 13'd23;
// //assign FracLen = `NF;
// // Determine if the result is denormal
// logic [`NE+1:0] SumExpTmpTmp;
// assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} - (`NF+4));
// assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
// assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
// // Determine the shift needed for denormal results
// assign SumExpTmpMinus1 = SumExpTmp-1;
// assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 0; //*** change this when changing the size of DenormShift also change to an and opperation
// // Normalize the sum
// assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them
// assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
// // Calculate the sticky bit
// assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+3:0]) : (|SumShifted[136:0]);
// assign Sticky = AddendStickyM | NormSumSticky;
// // Determine sum's exponent
// assign SumExp = SumZero ? 0 : //***again fix mux
// ResultDenorm ? 0 :
// SumExpTmp;
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
// ///////////////////////////////////////////////////////////////////////////////
// // Rounding
// ///////////////////////////////////////////////////////////////////////////////
// // round to nearest even
// // {Guard, Round, Sticky}
// // 0xx - do nothing
// // 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// // - don't add 1 if a small number was supposed to be subtracted
// // 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// // 110/111 - Plus1
// // round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// // round to -infinity
// // - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// // - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// // round to infinity
// // - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// // - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
// // round to nearest max magnitude
// // {Guard, Round, Sticky}
// // 0xx - do nothing
// // 100 - tie - Plus1
// // - don't add 1 if a small number was supposed to be subtracted
// // 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// // 110/111 - Plus1
// // determine guard, round, and least significant bit of the result
// assign Guard = FmtM ? NormSum[2] : NormSum[31];
// assign Round = FmtM ? NormSum[1] : NormSum[30];
// assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
// // used to determine underflow flag
// assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
// assign UfRound = FmtM ? NormSum[0] : NormSum[29];
// assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
// // Deterimine if a small number was supposed to be subtrated
// assign SubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky) & ~ZZeroM;
// always_comb begin
// // Determine if you add 1
// case (FrmM)
// 3'b000: CalcPlus1 = Guard & (Round | ((Sticky|UfRound)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfRound)&LSBNormSum&~SubBySmallNum));//round to nearest even
// 3'b001: CalcPlus1 = 0;//round to zero
// 3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
// 3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
// 3'b100: CalcPlus1 = (Guard & (Round | ((Sticky|UfRound)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfRound)&~SubBySmallNum)));//round to nearest max magnitude
// default: CalcPlus1 = 1'bx;
// endcase
// // Determine if you add 1 (for underflow flag)
// case (FrmM)
// 3'b000: UfCalcPlus1 = UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&UfLSBNormSum&~SubBySmallNum));//round to nearest even
// 3'b001: UfCalcPlus1 = 0;//round to zero
// 3'b010: UfCalcPlus1 = ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round down
// 3'b011: UfCalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round up
// 3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&~SubBySmallNum)));//round to nearest max magnitude
// default: UfCalcPlus1 = 1'bx;
// endcase
// // Determine if you subtract 1
// case (FrmM)
// 3'b000: CalcMinus1 = 0;//round to nearest even
// 3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
// 3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
// 3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
// 3'b100: CalcMinus1 = 0;//round to nearest max magnitude
// default: CalcMinus1 = 1'bx;
// endcase
// end
// // If an answer is exact don't round
// assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round);
// assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard | UfRound);
// assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round);
// // Compute rounded result
// logic [`FLEN:0] RoundAdd; //*** move this up
// logic [`NF-1:0] NormSumTruncated;
// assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
// Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
// assign NormSumTruncated = FmtM ? NormSum[`NF+2:3] : {NormSum[54:32], 29'b0};
// assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
// assign ResultExp = FullResultExp[`NE-1:0];
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
// Determine the sign if the sum is zero
// if cancelation then 0 unless round to -infinity
// otherwise psign
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
// is the result negitive
// if p - z is the Sum negitive
// if -p + z is the Sum positive
// if -p - z then the Sum is negitive
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
// ///////////////////////////////////////////////////////////////////////////////
// // Flags
// ///////////////////////////////////////////////////////////////////////////////
// // Set Invalid flag for following cases:
// // 1) any input is a signaling NaN
// // 2) Inf - Inf (unless x or y is NaN)
// // 3) 0 * Inf
// assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}};
// assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
// assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// // Set Overflow flag if the number is too big to be represented
// // - Don't set the overflow flag if an overflowed result isn't outputed
// assign Overflow = FullResultExp >= {MaxExp} & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// // Set Underflow flag if the number is too small to be represented in normal numbers
// // - Don't set the underflow flag if the result is exact
// assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky|UfRound)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// // Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// // - Don't set the underflow flag if an underflowed result isn't outputed
// assign Inexact = (Sticky|UfRound|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// // Combine flags
// // - FMA can't set the Divide by zero flag
// // - Don't set the underflow flag if the result was rounded up to a normal number
// assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign FMAResM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult : // has to be before inf
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
KillProdM ? KillProdResult :
Overflow ? OverflowResult :
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
// *** use NF where needed
endmodule
module mult(
input logic [`NF:0] XManE, YManE,
output logic [2*`NF+1:0] ProdManE
);
assign ProdManE = XManE * YManE;
endmodule
module alignshift(
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
input logic ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [`NE+1:0] ProdExpE,
input logic [`NE-1:0] Denorm,
output logic [3*`NF+5:0] AlignedAddendE,
output logic AddendStickyE,
output logic KillProdE
);
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
logic [`NE-1:0] DenormZExp;
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one to the exponent if it is a denormal number
assign DenormZExp = ZDenormE ? Denorm : ZExpE;
assign AlignCnt = ProdExpE - DenormZExp + (`NF+3);
// Defualt Addition without shifting
// | 54'b0 | 106'b(product) | 2'b0 |
// |1'b0| addnend |
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
assign ZManPreShifted = {ZManE,(3*`NF+5)'(0)};
always_comb
begin
// If the product is too small to effect the sum, kill the product
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
if ($signed(AlignCnt) < $signed(0)) begin
KillProdE = 1;
ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0};
AddendStickyE = ~(XZeroE|YZeroE);
// // If the Addend is shifted left (negitive AlignCnt)
// // | 54'b0 | 106'b(product) | 2'b0 |
// // | addnend |
// end else if($signed(AlignCnt) <= $signed(0)) begin
// KillProdE = 0;
// ZManShifted = ZManPreShifted << -AlignCnt;
// AddendStickyE = |(ZManShifted[`NF-1:0]);
// If the Addend is shifted right (positive AlignCnt)
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if ($signed(AlignCnt)<=$signed(3*`NF+4)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted >> AlignCnt;
AddendStickyE = |(ZManShifted[`NF-1:0]);
2021-04-15 18:28:00 +00:00
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the addend to be considered too small
// - The 2 extra bits are needed for rounding
2021-04-15 18:28:00 +00:00
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else begin
KillProdE = 0;
ZManShifted = 0;
AddendStickyE = ~ZZeroE;
end
end
assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
endmodule
module fmaadd(
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition
input logic [2*`NF+1:0] ProdManE,
input logic PSgnE, ZSgnEffE,
input logic KillProdE,
input logic XZeroE, YZeroE,
output logic [3*`NF+5:0] SumE,
output logic NegSumE,
output logic InvZE,
output logic [8:0] NormCntE
);
logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum
logic [2*`NF+1:0] ProdMan2; // product being added
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
logic [3*`NF+6:0] NegProdMan2;
logic [8:0] PNormCnt, NNormCnt;
2021-04-15 18:28:00 +00:00
///////////////////////////////////////////////////////////////////////////////
// Addition
///////////////////////////////////////////////////////////////////////////////
// Negate Z when doing one of the following opperations:
// -prod + Z
// prod - Z
assign InvZE = ZSgnEffE ^ PSgnE;
2021-06-04 18:00:11 +00:00
// Choose an inverted or non-inverted addend - the one is added later
assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
// Do the addition
// - add one to negate if the added was inverted
// - the 2 extra bits at the begining and end are needed for rounding
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
assign NegPreSum = AlignedAddendE + NegProdMan2;
// Is the sum negitive
assign NegSumE = PreSum[3*`NF+6];
// If the sum is negitive, negate the sum.
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
// set to PNormCnt if the product is zero (there may be an additional bit of error from the negation)
2021-06-04 18:00:11 +00:00
endmodule
2021-06-04 18:00:11 +00:00
// module fmalzc(
// input logic [3*`NF+5:0] Sum,
// output logic [8:0] NormCntCheck
// );
2021-06-04 18:00:11 +00:00
// ///////////////////////////////////////////////////////////////////////////////
// // Leading one detector
// ///////////////////////////////////////////////////////////////////////////////
2021-06-14 17:42:53 +00:00
// //*** replace with non-behavoral code
// logic [8:0] i;
// always_comb begin
// i = 0;
// while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
// NormCntCheck = i;
// end
2021-06-04 18:00:11 +00:00
// endmodule
////////////////////////////////////////////////////////////////////////////////////
// Filename: lza.v
// Author: Katherine Parry
// Date: 2021/02/07
//
// Description: Leading Zero Anticipator
// This a the Kershaw Leading Zero Anticipator(LZA) using the algorithm described in
// "Leading Zero Anticipation and Dectection - A Comparison of Methods" (2001)
// Schmookler and Nowka.
// After swapping, alignment and inversion of A & B, the following functions are
// applied to all 'i' bits.
// -- T[i] = A[i] XOR B[i]; // Propagation that will occur
// -- G[i] = A[i] AND B[i]; // The value Generated
// -- Z[i] = ~(A[i] OR B[i]): // Fill functions
// The leading Zero is determined by the first occurance of the pattern T*GGZ*,
// whereas Leading ones are found by the pattern T*ZG*
// To evaluate the pattern we map it to the function that evaluates the three bits
// (current, before, & after):
// f[i] = T[i-1](G[i]~Z[i+1] & ~G[i+1]Z[i]) | ~T[i-1](Z[i]~Z[i+1] & G[i]~G[i+1])
//
////////////////////////////////////////////////////////////////////////////////////
module poslza(
// parameter SIGNIFICANT_SZ=52;
//leading digit anticipator
// localparam sz=SIGNIFICANT_SZ+1;
input logic [3*`NF+6:0] A,
input logic [2*`NF+1:0] P,
output logic [8:0] PCnt
);
// Compute Generate, Propageate and Kill for each bit
logic [3*`NF+6:0] T;
logic [3*`NF+5:0] Z;
// assign T = A^{{`NF+3{1'b0}}, P, 2'b0};
// assign Z = ~(A|{{`NF+3{1'b0}}, P, 2'b0});
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
assign Z[3*`NF+5:2*`NF+4] = A[3*`NF+5:2*`NF+4];
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
assign Z[2*`NF+3:2] = A[2*`NF+3:2]|P;
assign T[1:0] = A[1:0];
assign Z[1:0] = A[1:0];
2021-06-04 18:00:11 +00:00
// Apply function to determine Leading pattern
logic [3*`NF+6:0] pf;
assign pf = T^{Z[3*`NF+5:0], 1'b0};
// assign pf = T^{~Z[3*`NF+5:0], 1'b0};
2021-06-04 18:00:11 +00:00
logic [8:0] i;
always_comb begin
i = 0;
while (~pf[3*`NF+6-i] && $unsigned(i) <= $unsigned(3*`NF+6)) i = i+1; // search for leading one
PCnt = i;
end
endmodule
2021-06-04 18:00:11 +00:00
module neglza(
// parameter SIGNIFICANT_SZ=52;
//leading digit anticipator
// localparam sz=SIGNIFICANT_SZ+1;
input logic [3*`NF+6:0] A,
input logic [3*`NF+6:0] P,
output logic [8:0] NCnt
);
// Compute Generate, Propageate and Kill for each bit
logic [3*`NF+6:0] T;
logic [3*`NF+5:0] Z;
assign T = A^P;
assign Z = ~(A[3*`NF+5:0]|P[3*`NF+5:0]);
2021-06-04 18:00:11 +00:00
// Apply function to determine Leading pattern
logic [3*`NF+6:0] f;
assign f = T^{~Z, 1'b0};
logic [8:0] i;
always_comb begin
i = 0;
while (~f[3*`NF+6-i] && $unsigned(i) <= $unsigned(3*`NF+6)) i = i+1; // search for leading one
NCnt = i;
end
endmodule
2021-06-04 18:00:11 +00:00
module normalize(
input logic [3*`NF+5:0] SumM,
input logic [`NE-1:0] ZExpM,
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic [8:0] NormCntM,
input logic FmtM, // precision 1 = double 0 = single
input logic KillProdM,
input logic AddendStickyM,
output logic [`NF+2:0] NormSum, // normalized sum
output logic SumZero,
output logic NormSumSticky, UfSticky,
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
output logic ResultDenorm
);
logic [`NE+1:0] FracLen; // length of the fraction
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
logic [3*`NF+5:0] SumShifted; // sum shifted for normalization
logic [3*`NF+7:0] SumShiftedTmp; // sum shifted for normalization
logic [`NE+1:0] SumExpTmpTmp;
logic PreResultDenorm;
logic LZAPlus1;
2021-06-04 18:00:11 +00:00
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
// Determine if the sum is zero
assign SumZero = ~(|SumM);
2021-06-04 18:00:11 +00:00
// determine the length of the fraction based on precision
assign FracLen = FmtM ? `NF+1 : 13'd24;
2021-07-24 18:59:57 +00:00
//assign FracLen = `NF;
2021-06-14 17:42:53 +00:00
// Determine if the result is denormal
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
2021-07-29 03:49:21 +00:00
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
2021-07-24 18:59:57 +00:00
assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
2021-06-04 18:00:11 +00:00
// Determine the shift needed for denormal results
// - if not denorm add 1 to shift out the leading 1
assign DenormShift = PreResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
// Normalize the sum
assign SumShiftedTmp = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
// LZA correction
assign LZAPlus1 = SumShiftedTmp[3*`NF+7];
assign SumShifted = LZAPlus1 ? SumShiftedTmp[3*`NF+6:1] : SumShiftedTmp[3*`NF+5:0];
2021-07-21 02:04:21 +00:00
assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
// Calculate the sticky bit
assign NormSumSticky = (|SumShifted[2*`NF+2:0]) | (|SumShifted[136:2*`NF+3]&~FmtM);
assign UfSticky = AddendStickyM | NormSumSticky;
2021-06-04 18:00:11 +00:00
// Determine sum's exponent
assign SumExp = (SumExpTmp+LZAPlus1+(~|SumExpTmp&SumShiftedTmp[3*`NF+6])) & {`NE+2{~(SumZero|ResultDenorm)}};
// recalculate if the result is denormalized
assign ResultDenorm = PreResultDenorm&~SumShiftedTmp[3*`NF+6]&~SumShiftedTmp[3*`NF+7];
// // Determine if the sum is zero
// assign SumZero = ~(|Sum);
// // determine the length of the fraction based on precision
// assign FracLen = FmtM ? `NF : 13'd23;
// //assign FracLen = `NF;
// // Determine if the result is denormal
// assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} + 1 - (`NF+4));
// assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
// assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
// // Determine the shift needed for denormal results
// // - if not denorm add 1 to shift out the leading 1
// assign DenormShift = ResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
// // Normalize the sum
// assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them
// assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
// // Calculate the sticky bit
// assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+2:0]) : (|SumShifted[136:0]);
// assign UfSticky = AddendStickyM | NormSumSticky;
// // Determine sum's exponent
// assign SumExp = SumZero ? 0 : //***again fix mux
// ResultDenorm ? 0 :
// SumExpTmp;
2021-04-15 18:28:00 +00:00
endmodule
2021-04-15 18:28:00 +00:00
module fmaround(
input logic FmtM, // precision 1 = double 0 = single
input logic [2:0] FrmM,
input logic UfSticky,
output logic Sticky,
input logic [`NF+2:0] NormSum, // normalized sum
input logic AddendStickyM,
input logic NormSumSticky,
input logic ZZeroM,
input logic InvZM,
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
input logic ResultSgn,
output logic CalcPlus1, Plus1, UfPlus1, Minus1,
output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
output logic [`NF-1:0] ResultFrac, // Result fraction
output logic [`NE-1:0] ResultExp, // Result exponent
output logic Round, Guard, UfRound, UfLSBNormSum
);
logic LSBNormSum;
logic SubBySmallNum, UfSubBySmallNum; // was there supposed to be a subtraction by a small number
logic UfGuard;
logic UfCalcPlus1, CalcMinus1;
logic [`FLEN:0] RoundAdd; //*** move this up
logic [`NF-1:0] NormSumTruncated;
2021-04-15 18:28:00 +00:00
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
// round to nearest even
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
2021-06-04 18:00:11 +00:00
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
// round to -infinity
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
// round to infinity
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
2021-06-14 17:42:53 +00:00
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[2] : NormSum[31];
assign Round = FmtM ? NormSum[1] : NormSum[30];
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
2021-06-04 18:00:11 +00:00
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
assign UfRound = FmtM ? NormSum[0] : NormSum[29];
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
2021-06-04 18:00:11 +00:00
// determine sticky
assign Sticky = UfSticky | NormSum[0];
// Deterimine if a small number was supposed to be subtrated
assign SubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky|UfRound) & ~ZZeroM; //***here
assign UfSubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky) & ~ZZeroM; //***here
2021-06-04 18:00:11 +00:00
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmM)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = ResultSgn & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgn & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
end
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);//UfRound is part of sticky
assign Minus1 = CalcMinus1 & (Sticky | Guard | Round);
// Compute rounded result
2021-07-21 02:04:21 +00:00
assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
assign NormSumTruncated = {NormSum[`NF+2:32], NormSum[31:3]&{29{FmtM}}};
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
2021-07-21 02:04:21 +00:00
assign ResultExp = FullResultExp[`NE-1:0];
2021-06-04 18:00:11 +00:00
endmodule
2021-06-04 18:00:11 +00:00
module fmaflags(
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XZeroM, YZeroM, // inputs are zero
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
input logic ZSgnEffM, PSgnM,
input logic Round, Guard, UfRound, UfLSBNormSum, Sticky, UfPlus1,
input logic FmtM, // precision 1 = double 0 = single
output logic Invalid, Overflow, Underflow,
output logic [4:0] FMAFlgM
);
logic [`NE+1:0] MaxExp; // maximum value of the exponent
logic SigNaN;
logic UnderflowFlag, Inexact;
2021-06-14 17:42:53 +00:00
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// Set Invalid flag for following cases:
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
2021-07-24 18:59:57 +00:00
// assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}};
2021-07-14 21:56:49 +00:00
assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgnM ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
logic LtMaxExp;
assign LtMaxExp = FmtM ? &FullResultExp[`NE-1:0] | FullResultExp[`NE] : &FullResultExp[7:0] | FullResultExp[8];
assign Overflow = LtMaxExp & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
2021-07-24 18:59:57 +00:00
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
2021-07-21 02:04:21 +00:00
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Combine flags
// - FMA can't set the Divide by zero flag
// - Don't set the underflow flag if the result was rounded up to a normal number
2021-07-02 16:40:58 +00:00
assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
2021-06-14 17:42:53 +00:00
endmodule