2021-06-28 22:53:58 +00:00
2021-06-04 18:00:11 +00:00
module fma2 (
2021-05-01 02:18:01 +00:00
2021-06-28 22:53:58 +00:00
input logic [ 63 : 0 ] X , // X
input logic [ 63 : 0 ] Y , // Y
input logic [ 63 : 0 ] Z , // Z
input logic [ 2 : 0 ] FrmM , // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [ 2 : 0 ] FOpCtrlM , // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtM , // precision 1 = double 0 = single
input logic [ 105 : 0 ] ProdManM , // 1.X frac * 1.Y frac
input logic [ 161 : 0 ] AlignedAddendM , // Z aligned for addition
input logic [ 12 : 0 ] ProdExpM , // X exponent + Y exponent - bias
input logic AddendStickyM , // sticky bit that is calculated during alignment
input logic KillProdM , // set the product to zero before addition if the product is too small to matter
input logic XZeroM , YZeroM , ZZeroM , // inputs are zero
input logic XInfM , YInfM , ZInfM , // inputs are infinity
input logic XNaNM , YNaNM , ZNaNM , // inputs are NaN
output logic [ 63 : 0 ] FmaResultM , // FMA final result
output logic [ 4 : 0 ] FmaFlagsM ) ; // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
logic [ 51 : 0 ] ResultFrac ; // Result fraction
logic [ 10 : 0 ] ResultExp ; // Result exponent
logic ResultSgn ; // Result sign
logic [ 10 : 0 ] ZExp ; // input exponent
logic XSgn , YSgn , ZSgn ; // input sign
logic PSgn ; // product sign
logic [ 105 : 0 ] ProdMan2 ; // product being added
logic [ 162 : 0 ] AlignedAddend2 ; // possibly inverted aligned Z
logic [ 161 : 0 ] Sum ; // positive sum
logic [ 162 : 0 ] PreSum ; // possibly negitive sum
logic [ 12 : 0 ] SumExp ; // exponent of the normalized sum
logic [ 12 : 0 ] SumExpTmp ; // exponent of the normalized sum not taking into account denormal or zero results
logic [ 12 : 0 ] SumExpTmpMinus1 ; // SumExpTmp-1
logic [ 12 : 0 ] FullResultExp ; // ResultExp with bits to determine sign and overflow
logic [ 54 : 0 ] NormSum ; // normalized sum
logic [ 161 : 0 ] SumShifted ; // sum shifted for normalization
logic [ 8 : 0 ] NormCnt ; // output of the leading zero detector
logic NormSumSticky ; // sticky bit calulated from the normalized sum
logic SumZero ; // is the sum zero
logic NegSum ; // is the sum negitive
logic InvZ ; // invert Z if there is a subtraction (-product + Z or product - Z)
logic ResultDenorm ; // is the result denormalized
logic Sticky ; // Sticky bit
logic Plus1 , Minus1 , CalcPlus1 , CalcMinus1 ; // do you add or subtract one for rounding
logic UfPlus1 , UfCalcPlus1 ; // do you add one (for determining underflow flag)
logic Invalid , Underflow , Overflow , Inexact ; // flags
logic [ 8 : 0 ] DenormShift ; // right shift if the result is denormalized
logic SubBySmallNum ; // was there supposed to be a subtraction by a small number
logic [ 63 : 0 ] Addend ; // value to add (Z or zero)
logic ZeroSgn ; // the result's sign if the sum is zero
logic ResultSgnTmp ; // the result's sign assuming the result is not zero
logic Guard , Round , LSBNormSum ; // bits needed to determine rounding
logic UfGuard , UfRound , UfLSBNormSum ; // bits needed to determine rounding for underflow flag
logic [ 12 : 0 ] MaxExp ; // maximum value of the exponent
logic [ 12 : 0 ] FracLen ; // length of the fraction
logic SigNaN ; // is an input a signaling NaN
logic UnderflowFlag ; // Underflow singal used in FmaFlagsM (used to avoid a circular depencency)
logic [ 63 : 0 ] XNaNResult , YNaNResult , ZNaNResult , InvalidResult , OverflowResult , KillProdResult , UnderflowResult ; // possible results
///////////////////////////////////////////////////////////////////////////////
// Select input fields
// The following logic duplicates fma1 because it's cheaper to recompute than provide registers
///////////////////////////////////////////////////////////////////////////////
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlM [ 2 ] ? 64 'b0 : Z ;
2021-04-15 18:28:00 +00:00
2021-06-28 22:53:58 +00:00
// split inputs into the sign bit, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
assign XSgn = X [ 63 ] ;
assign YSgn = Y [ 63 ] ;
assign ZSgn = Addend [ 63 ] ^ FOpCtrlM [ 0 ] ; //Negate Z if subtraction
2021-04-15 18:28:00 +00:00
2021-06-28 22:53:58 +00:00
assign ZExp = FmtM ? Addend [ 62 : 52 ] : { 3 'b0 , Addend [ 62 : 55 ] } ;
2021-04-15 18:28:00 +00:00
2021-06-28 22:53:58 +00:00
// Calculate the product's sign
// Negate product's sign if FNMADD or FNMSUB
assign PSgn = XSgn ^ YSgn ^ FOpCtrlM [ 1 ] ;
2021-04-15 18:28:00 +00:00
2021-06-28 22:53:58 +00:00
///////////////////////////////////////////////////////////////////////////////
// Addition
///////////////////////////////////////////////////////////////////////////////
// Negate Z when doing one of the following opperations:
// -prod + Z
// prod - Z
assign InvZ = ZSgn ^ PSgn ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Choose an inverted or non-inverted addend - the one is added later
assign AlignedAddend2 = InvZ ? ~ { 1 'b0 , AlignedAddendM } : { 1 'b0 , AlignedAddendM } ;
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdMan2 = KillProdM ? 106 'b0 : ProdManM ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Do the addition
// - add one to negate if the added was inverted
// - the 2 extra bits at the begining and end are needed for rounding
assign PreSum = AlignedAddend2 + { 55 'b0 , ProdMan2 , 2 'b0 } + { 162 'b0 , InvZ } ;
// Is the sum negitive
assign NegSum = PreSum [ 162 ] ;
// If the sum is negitive, negate the sum.
assign Sum = NegSum ? - PreSum [ 161 : 0 ] : PreSum [ 161 : 0 ] ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
///////////////////////////////////////////////////////////////////////////////
// Leading one detector
///////////////////////////////////////////////////////////////////////////////
2021-06-14 17:42:53 +00:00
2021-06-28 22:53:58 +00:00
//*** replace with non-behavoral code
logic [ 8 : 0 ] i ;
always_comb begin
i = 0 ;
while ( ~ Sum [ 161 - i ] & & $unsigned ( i ) < = $unsigned ( 9 'd161 ) ) i = i + 1 ; // search for leading one
NormCnt = i + 1 ; // compute shift count
end
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Determine if the sum is zero
assign SumZero = ~ ( | Sum ) ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// determine the length of the fraction based on precision
assign FracLen = FmtM ? 13 'd52 : 13 'd23 ;
2021-06-14 17:42:53 +00:00
2021-06-28 22:53:58 +00:00
// Determine if the result is denormal
assign SumExpTmp = KillProdM ? { 2 'b0 , ZExp } : ProdExpM + - ( { 4 'b0 , NormCnt } - 13 'd56 ) ;
assign ResultDenorm = $signed ( SumExpTmp ) < = 0 & ( $signed ( SumExpTmp ) > = $signed ( - FracLen ) ) & ~ SumZero ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Determine the shift needed for denormal results
assign SumExpTmpMinus1 = SumExpTmp - 1 ;
assign DenormShift = ResultDenorm ? SumExpTmpMinus1 [ 8 : 0 ] : 9 'b0 ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Normalize the sum
assign SumShifted = SumZero ? 162 'b0 : Sum < < NormCnt + DenormShift ;
assign NormSum = SumShifted [ 161 : 107 ] ;
// Calculate the sticky bit
assign NormSumSticky = FmtM ? ( | SumShifted [ 107 : 0 ] ) : ( | SumShifted [ 136 : 0 ] ) ;
assign Sticky = AddendStickyM | NormSumSticky ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Determine sum's exponent
assign SumExp = SumZero ? 13 'b0 :
ResultDenorm ? 13 'b0 :
SumExpTmp ;
2021-04-15 18:28:00 +00:00
2021-06-28 22:53:58 +00:00
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// round to nearest even
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// round to -infinity
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// round to infinity
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
2021-06-14 17:42:53 +00:00
2021-06-28 22:53:58 +00:00
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum [ 2 ] : NormSum [ 31 ] ;
assign Round = FmtM ? NormSum [ 1 ] : NormSum [ 30 ] ;
assign LSBNormSum = FmtM ? NormSum [ 3 ] : NormSum [ 32 ] ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum [ 1 ] : NormSum [ 30 ] ;
assign UfRound = FmtM ? NormSum [ 0 ] : NormSum [ 29 ] ;
assign UfLSBNormSum = FmtM ? NormSum [ 2 ] : NormSum [ 31 ] ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Deterimine if a small number was supposed to be subtrated
assign SubBySmallNum = AddendStickyM & InvZ & ~ ( NormSumSticky ) & ~ ZZeroM ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
always_comb begin
// Determine if you add 1
case ( FrmM )
3 'b000 : CalcPlus1 = Guard & ( Round | ( ( Sticky | UfGuard ) & ~ ( ~ Round & SubBySmallNum ) ) | ( ~ Round & ~ ( Sticky | UfGuard ) & LSBNormSum & ~ SubBySmallNum ) ) ; //round to nearest even
3 'b001 : CalcPlus1 = 0 ; //round to zero
3 'b010 : CalcPlus1 = ResultSgn & ~ ( SubBySmallNum & ~ Guard & ~ Round ) ; //round down
3 'b011 : CalcPlus1 = ~ ResultSgn & ~ ( SubBySmallNum & ~ Guard & ~ Round ) ; //round up
3 'b100 : CalcPlus1 = ( Guard & ( Round | ( ( Sticky | UfGuard ) & ~ ( ~ Round & SubBySmallNum ) ) | ( ~ Round & ~ ( Sticky | UfGuard ) & ~ SubBySmallNum ) ) ) ; //round to nearest max magnitude
default : CalcPlus1 = 1 ' bx ;
endcase
// Determine if you add 1 (for underflow flag)
case ( FrmM )
3 'b000 : UfCalcPlus1 = UfGuard & ( UfRound | ( Sticky & ~ ( ~ UfRound & SubBySmallNum ) ) | ( ~ UfRound & ~ Sticky & UfLSBNormSum & ~ SubBySmallNum ) ) ; //round to nearest even
3 'b001 : UfCalcPlus1 = 0 ; //round to zero
3 'b010 : UfCalcPlus1 = ResultSgn & ~ ( SubBySmallNum & ~ UfGuard & ~ UfRound ) ; //round down
3 'b011 : UfCalcPlus1 = ~ ResultSgn & ~ ( SubBySmallNum & ~ UfGuard & ~ UfRound ) ; //round up
3 'b100 : UfCalcPlus1 = ( UfGuard & ( UfRound | ( Sticky & ~ ( ~ UfRound & SubBySmallNum ) ) | ( ~ UfRound & ~ Sticky & ~ SubBySmallNum ) ) ) ; //round to nearest max magnitude
default : UfCalcPlus1 = 1 ' bx ;
endcase
// Determine if you subtract 1
case ( FrmM )
3 'b000 : CalcMinus1 = 0 ; //round to nearest even
3 'b001 : CalcMinus1 = SubBySmallNum & ~ Guard & ~ Round ; //round to zero
3 'b010 : CalcMinus1 = ~ ResultSgn & ~ Guard & ~ Round & SubBySmallNum ; //round down
3 'b011 : CalcMinus1 = ResultSgn & ~ Guard & ~ Round & SubBySmallNum ; //round up
3 'b100 : CalcMinus1 = 0 ; //round to nearest max magnitude
default : CalcMinus1 = 1 ' bx ;
endcase
end
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & ( Sticky | UfGuard | Guard | Round ) ;
assign UfPlus1 = UfCalcPlus1 & ( Sticky | UfGuard | UfRound ) ;
assign Minus1 = CalcMinus1 & ( Sticky | UfGuard | Guard | Round ) ;
// Compute rounded result
logic [ 64 : 0 ] RoundAdd ;
logic [ 51 : 0 ] NormSumTruncated ;
assign RoundAdd = FmtM ? Minus1 ? { 65 { 1 'b1 } } : { 64 'b0 , Plus1 } :
Minus1 ? { { 36 { 1 'b1 } } , 29 'b0 } : { 35 'b0 , Plus1 , 29 'b0 } ;
assign NormSumTruncated = FmtM ? NormSum [ 54 : 3 ] : { NormSum [ 54 : 32 ] , 29 'b0 } ;
assign { FullResultExp , ResultFrac } = { SumExp , NormSumTruncated } + RoundAdd ;
2021-06-21 00:24:09 +00:00
assign ResultExp = FullResultExp [ 10 : 0 ] ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// Determine the sign if the sum is zero
// if cancelation then 0 unless round to -infinity
// otherwise psign
assign ZeroSgn = ( PSgn ^ ZSgn ) & ~ Underflow ? FrmM = = 3 'b010 : PSgn ;
2021-06-04 18:00:11 +00:00
2021-06-28 22:53:58 +00:00
// is the result negitive
// if p - z is the Sum negitive
// if -p + z is the Sum positive
// if -p - z then the Sum is negitive
assign ResultSgnTmp = InvZ & ( ZSgn ) & NegSum | InvZ & PSgn & ~ NegSum | ( ( ZSgn ) & PSgn ) ;
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp ;
2021-04-15 18:28:00 +00:00
2021-06-14 17:42:53 +00:00
2021-06-28 22:53:58 +00:00
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// Set Invalid flag for following cases:
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
assign MaxExp = FmtM ? 13 'd2047 : 13 'd255 ;
assign SigNaN = FmtM ? ( XNaNM & ~ X [ 51 ] ) | ( YNaNM & ~ Y [ 51 ] ) | ( ZNaNM & ~ Addend [ 51 ] ) :
( XNaNM & ~ X [ 54 ] ) | ( YNaNM & ~ Y [ 54 ] ) | ( ZNaNM & ~ Addend [ 54 ] ) ;
assign Invalid = SigNaN | ( ( XInfM | | YInfM ) & ZInfM & ( PSgn ^ ZSgn ) & ~ XNaNM & ~ YNaNM ) | ( XZeroM & YInfM ) | ( YZeroM & XInfM ) ;
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
assign Overflow = FullResultExp > = MaxExp & ~ FullResultExp [ 12 ] & ~ ( XNaNM | YNaNM | ZNaNM | XInfM | YInfM | ZInfM ) ;
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = ( SumExp [ 12 ] | ( ( SumExp = = 0 ) & ( Round | Guard | Sticky | UfGuard ) ) ) & ~ ( XNaNM | YNaNM | ZNaNM | XInfM | YInfM | ZInfM ) ;
assign UnderflowFlag = ( FullResultExp [ 12 ] | ( ( FullResultExp = = 0 ) | ( ( FullResultExp = = 1 ) & ( SumExp = = 0 ) & ~ ( UfPlus1 & UfLSBNormSum ) ) ) & ( Round | Guard | Sticky ) ) & ~ ( XNaNM | YNaNM | ZNaNM | XInfM | YInfM | ZInfM ) ;
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = ( Sticky | UfGuard | Overflow | Guard | Round | Underflow ) & ~ ( XNaNM | YNaNM | ZNaNM | XInfM | YInfM | ZInfM ) ;
// Combine flags
// - FMA can't set the Divide by zero flag
// - Don't set the underflow flag if the result was rounded up to a normal number
assign FmaFlagsM = { Invalid , 1 'b0 , Overflow , UnderflowFlag , Inexact } ;
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
assign XNaNResult = FmtM ? { XSgn , X [ 62 : 52 ] , 1 'b1 , X [ 50 : 0 ] } : { XSgn , X [ 62 : 55 ] , 1 'b1 , X [ 53 : 0 ] } ;
assign YNaNResult = FmtM ? { YSgn , Y [ 62 : 52 ] , 1 'b1 , Y [ 50 : 0 ] } : { YSgn , Y [ 62 : 55 ] , 1 'b1 , Y [ 53 : 0 ] } ;
assign ZNaNResult = FmtM ? { ZSgn , Addend [ 62 : 52 ] , 1 'b1 , Addend [ 50 : 0 ] } : { ZSgn , Addend [ 62 : 55 ] , 1 'b1 , Addend [ 53 : 0 ] } ;
assign OverflowResult = FmtM ? ( ( FrmM [ 1 : 0 ] = = 2 'b01 ) | ( FrmM [ 1 : 0 ] = = 2 'b10 & ~ ResultSgn ) | ( FrmM [ 1 : 0 ] = = 2 'b11 & ResultSgn ) ) ? { ResultSgn , 11 'h7fe , { 52 { 1 'b1 } } } :
{ ResultSgn , 11 'h7ff , 52 'b0 } :
( ( FrmM [ 1 : 0 ] = = 2 'b01 ) | ( FrmM [ 1 : 0 ] = = 2 'b10 & ~ ResultSgn ) | ( FrmM [ 1 : 0 ] = = 2 'b11 & ResultSgn ) ) ? { ResultSgn , 8 'hfe , { 23 { 1 'b1 } } , 32 'b0 } :
{ ResultSgn , 8 'hff , 55 'b0 } ;
assign InvalidResult = FmtM ? { ResultSgn , 11 'h7ff , 1 'b1 , 51 'b0 } : { ResultSgn , 8 'hff , 1 'b1 , 54 'b0 } ;
assign KillProdResult = FmtM ? { ResultSgn , Addend [ 62 : 0 ] - { 62 'b0 , ( Minus1 & AddendStickyM ) } } + { 62 'b0 , ( Plus1 & AddendStickyM ) } : { ResultSgn , Addend [ 62 : 32 ] - { 30 'b0 , ( Minus1 & AddendStickyM ) } + { 30 'b0 , ( Plus1 & AddendStickyM ) } , 32 'b0 } ;
assign UnderflowResult = FmtM ? { ResultSgn , 63 'b0 } + { 63 'b0 , ( CalcPlus1 & ( AddendStickyM | FrmM [ 1 ] ) ) } : { { ResultSgn , 31 'b0 } + { 31 'b0 , ( CalcPlus1 & ( AddendStickyM | FrmM [ 1 ] ) ) } , 32 'b0 } ;
assign FmaResultM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult : // has to be before inf
XInfM ? { PSgn , X [ 62 : 0 ] } :
YInfM ? { PSgn , Y [ 62 : 0 ] } :
ZInfM ? { ZSgn , Addend [ 62 : 0 ] } :
Overflow ? OverflowResult :
KillProdM ? KillProdResult : // has to be after Underflow
Underflow & ~ ResultDenorm ? UnderflowResult :
FmtM ? { ResultSgn , ResultExp , ResultFrac } :
{ ResultSgn , ResultExp [ 7 : 0 ] , ResultFrac , 3 'b0 } ;
2021-06-14 17:42:53 +00:00
endmodule