cvw/pipelined/src/fpu/fsgninj.sv

85 lines
3.3 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
//
2022-07-07 23:01:33 +00:00
// Written: me@KatherineParry.com
// Modified: 6/23/2021
//
// Purpose: FPU Sign Injection instructions
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
2022-06-01 23:34:29 +00:00
`include "wally-config.vh"
module fsgninj (
input logic Xs, Ys, // X and Y sign bits
input logic [`FLEN-1:0] X, // X
input logic [`FMTBITS-1:0] Fmt, // format
input logic [1:0] OpCtrl, // operation control
output logic [`FLEN-1:0] SgnRes // result
);
logic ResSgn;
// OpCtrl:
// 00 - fsgnj - directly copy over sign value of Y
// 01 - fsgnjn - negate sign value of Y
// 10 - fsgnjx - XOR sign values of X and Y
// calculate the result's sign
assign ResSgn = (OpCtrl[1] ? Xs : OpCtrl[0]) ^ Ys;
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
2022-06-01 23:34:29 +00:00
if (`FPSIZES == 1)
assign SgnRes = {ResSgn, X[`FLEN-2:0]};
2022-06-01 23:34:29 +00:00
else if (`FPSIZES == 2)
assign SgnRes = {~Fmt|ResSgn, X[`FLEN-2:`LEN1], Fmt ? X[`LEN1-1] : ResSgn, X[`LEN1-2:0]};
2022-06-01 23:34:29 +00:00
2022-06-15 22:58:33 +00:00
else if (`FPSIZES == 3) begin
logic [2:0] SgnBits;
2022-06-01 23:34:29 +00:00
always_comb
case (Fmt)
`FMT: SgnBits = {ResSgn, X[`LEN1-1], X[`LEN2-1]};
`FMT1: SgnBits = {1'b1, ResSgn, X[`LEN2-1]};
2022-06-15 22:58:33 +00:00
`FMT2: SgnBits = {2'b11, ResSgn};
default: SgnBits = {3{1'bx}};
2022-06-01 23:34:29 +00:00
endcase
assign SgnRes = {SgnBits[2], X[`FLEN-2:`LEN1], SgnBits[1], X[`LEN1-2:`LEN2], SgnBits[0], X[`LEN2-2:0]};
2022-06-15 22:58:33 +00:00
2022-06-01 23:34:29 +00:00
2022-06-15 22:58:33 +00:00
end else if (`FPSIZES == 4) begin
logic [3:0] SgnBits;
2022-06-01 23:34:29 +00:00
always_comb
case (Fmt)
`Q_FMT: SgnBits = {ResSgn, X[`D_LEN-1], X[`S_LEN-1], X[`H_LEN-1]};
`D_FMT: SgnBits = {1'b1, ResSgn, X[`S_LEN-1], X[`H_LEN-1]};
`S_FMT: SgnBits = {2'b11, ResSgn, X[`H_LEN-1]};
2022-06-15 22:58:33 +00:00
`H_FMT: SgnBits = {3'b111, ResSgn};
2022-06-01 23:34:29 +00:00
endcase
assign SgnRes = {SgnBits[3], X[`Q_LEN-2:`D_LEN], SgnBits[2], X[`D_LEN-2:`S_LEN], SgnBits[1], X[`S_LEN-2:`H_LEN], SgnBits[0], X[`H_LEN-2:0]};
2022-06-15 22:58:33 +00:00
end
endmodule