/////////////////////////////////////////// // // Written: me@KatherineParry.com // Modified: 6/23/2021 // // Purpose: FPU Sign Injection instructions // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fsgninj ( input logic Xs, Ys, // X and Y sign bits input logic [`FLEN-1:0] X, // X input logic [`FMTBITS-1:0] Fmt, // format input logic [1:0] OpCtrl, // operation control output logic [`FLEN-1:0] SgnRes // result ); logic ResSgn; // OpCtrl: // 00 - fsgnj - directly copy over sign value of Y // 01 - fsgnjn - negate sign value of Y // 10 - fsgnjx - XOR sign values of X and Y // calculate the result's sign assign ResSgn = (OpCtrl[1] ? Xs : OpCtrl[0]) ^ Ys; // format final result based on precision // - uses NaN-blocking format // - if there are any unsused bits the most significant bits are filled with 1s if (`FPSIZES == 1) assign SgnRes = {ResSgn, X[`FLEN-2:0]}; else if (`FPSIZES == 2) assign SgnRes = {~Fmt|ResSgn, X[`FLEN-2:`LEN1], Fmt ? X[`LEN1-1] : ResSgn, X[`LEN1-2:0]}; else if (`FPSIZES == 3) begin logic [2:0] SgnBits; always_comb case (Fmt) `FMT: SgnBits = {ResSgn, X[`LEN1-1], X[`LEN2-1]}; `FMT1: SgnBits = {1'b1, ResSgn, X[`LEN2-1]}; `FMT2: SgnBits = {2'b11, ResSgn}; default: SgnBits = {3{1'bx}}; endcase assign SgnRes = {SgnBits[2], X[`FLEN-2:`LEN1], SgnBits[1], X[`LEN1-2:`LEN2], SgnBits[0], X[`LEN2-2:0]}; end else if (`FPSIZES == 4) begin logic [3:0] SgnBits; always_comb case (Fmt) `Q_FMT: SgnBits = {ResSgn, X[`D_LEN-1], X[`S_LEN-1], X[`H_LEN-1]}; `D_FMT: SgnBits = {1'b1, ResSgn, X[`S_LEN-1], X[`H_LEN-1]}; `S_FMT: SgnBits = {2'b11, ResSgn, X[`H_LEN-1]}; `H_FMT: SgnBits = {3'b111, ResSgn}; endcase assign SgnRes = {SgnBits[3], X[`Q_LEN-2:`D_LEN], SgnBits[2], X[`D_LEN-2:`S_LEN], SgnBits[1], X[`S_LEN-2:`H_LEN], SgnBits[0], X[`H_LEN-2:0]}; end endmodule