cvw/src/fpu/fsgninj.sv

80 lines
2.9 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
// fsgninj.sv
//
2022-07-07 23:01:33 +00:00
// Written: me@KatherineParry.com
// Modified: 6/23/2021
//
// Purpose: FPU Sign Injection instructions
//
2023-01-12 12:35:44 +00:00
// Documentation: RISC-V System on Chip Design Chapter 13
//
2023-01-11 23:15:08 +00:00
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
2022-06-01 23:34:29 +00:00
`include "wally-config.vh"
module fsgninj (
input logic Xs, Ys, // X and Y sign bits
input logic [`FLEN-1:0] X, // X
input logic [`FMTBITS-1:0] Fmt, // format
input logic [1:0] OpCtrl, // operation control
output logic [`FLEN-1:0] SgnRes // result
);
logic ResSgn; // result sign
// OpCtrl:
// 00 - fsgnj - directly copy over sign value of Y
// 01 - fsgnjn - negate sign value of Y
// 10 - fsgnjx - XOR sign values of X and Y
// calculate the result's sign
assign ResSgn = (OpCtrl[1] ? Xs : OpCtrl[0]) ^ Ys;
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
2022-06-01 23:34:29 +00:00
2023-01-16 02:23:09 +00:00
if (`FPSIZES == 1)
assign SgnRes = {ResSgn, X[`FLEN-2:0]};
2023-01-16 02:23:09 +00:00
else if (`FPSIZES == 2)
assign SgnRes = {~Fmt|ResSgn, X[`FLEN-2:`LEN1], Fmt ? X[`LEN1-1] : ResSgn, X[`LEN1-2:0]};
else if (`FPSIZES == 3) begin
2022-06-15 22:58:33 +00:00
logic [2:0] SgnBits;
2023-01-16 02:23:09 +00:00
always_comb
case (Fmt)
`FMT: SgnBits = {ResSgn, X[`LEN1-1], X[`LEN2-1]};
`FMT1: SgnBits = {1'b1, ResSgn, X[`LEN2-1]};
`FMT2: SgnBits = {2'b11, ResSgn};
2023-01-16 02:23:09 +00:00
default: SgnBits = {3{1'bx}};
endcase
assign SgnRes = {SgnBits[2], X[`FLEN-2:`LEN1], SgnBits[1], X[`LEN1-2:`LEN2], SgnBits[0], X[`LEN2-2:0]};
2022-06-15 22:58:33 +00:00
end else if (`FPSIZES == 4) begin
logic [3:0] SgnBits;
2023-01-16 02:23:09 +00:00
always_comb
case (Fmt)
`Q_FMT: SgnBits = {ResSgn, X[`D_LEN-1], X[`S_LEN-1], X[`H_LEN-1]};
`D_FMT: SgnBits = {1'b1, ResSgn, X[`S_LEN-1], X[`H_LEN-1]};
`S_FMT: SgnBits = {2'b11, ResSgn, X[`H_LEN-1]};
`H_FMT: SgnBits = {3'b111, ResSgn};
endcase
assign SgnRes = {SgnBits[3], X[`Q_LEN-2:`D_LEN], SgnBits[2], X[`D_LEN-2:`S_LEN], SgnBits[1], X[`S_LEN-2:`H_LEN], SgnBits[0], X[`H_LEN-2:0]};
2022-06-15 22:58:33 +00:00
end
endmodule