cvw/pipelined/src/uncore/ram3.sv

107 lines
3.8 KiB
Systemverilog

///////////////////////////////////////////
// ram.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: On-chip RAM, external to core
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
// True-Dual-Port BRAM with Byte-wide Write Enable
// Read-First mode
// bytewrite_tdp_ram_rf.v
//
`include "wally-config.vh"
module ram #(parameter BASE=0, RANGE = 65535) (
input logic HCLK, HRESETn,
input logic HSELRam,
input logic [31:0] HADDR,
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
input logic [`XLEN-1:0] HWDATA,
input logic [3:0] HSIZED,
output logic [`XLEN-1:0] HREADRam,
output logic HRESPRam, HREADYRam
);
logic [`XLEN/8-1:0] ByteMaskM;
logic [31:0] HWADDR, A;
logic prevHREADYRam, risingHREADYRam;
logic initTrans;
logic memwrite;
logic [3:0] busycount;
swbytemask swbytemask(.HSIZED, .HADDRD(HWADDR[2:0]), .ByteMask(ByteMaskM));
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00);
// *** this seems like a weird way to use reset
flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELRam & HWRITE, memwrite);
flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A);
// busy FSM to extend READY signal
always @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
busycount <= 0;
HREADYRam <= #1 0;
end else begin
if (initTrans) begin
busycount <= 0;
HREADYRam <= #1 0;
end else if (~HREADYRam) begin
if (busycount == 0) begin // Ram latency, for testing purposes. *** test with different values such as 2
HREADYRam <= #1 1;
end else begin
busycount <= busycount + 1;
end
end
end
assign HRESPRam = 0; // OK
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
// Rising HREADY edge detector
// Indicates when ram is finishing up
// Needed because HREADY may go high for other reasons,
// and we only want to write data when finishing up.
flopenr #(1) prevhreadyRamreg(HCLK,~HRESETn, 1'b1, HREADYRam,prevHREADYRam);
assign risingHREADYRam = HREADYRam & ~prevHREADYRam;
always @(posedge HCLK)
HWADDR <= #1 A;
bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH)
memory(.clk(HCLK), .enaA(1'b1),
.addrA(A[ADDR_WDITH+OFFSET-1:OFFSET]), .doutA(HREADRam),
.enaB(memwrite & risingHREADYRam), .weB(ByteMaskM),
.addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA));
endmodule