/////////////////////////////////////////// // ram.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: On-chip RAM, external to core // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// // True-Dual-Port BRAM with Byte-wide Write Enable // Read-First mode // bytewrite_tdp_ram_rf.v // `include "wally-config.vh" module ram #(parameter BASE=0, RANGE = 65535) ( input logic HCLK, HRESETn, input logic HSELRam, input logic [31:0] HADDR, input logic HWRITE, input logic HREADY, input logic [1:0] HTRANS, input logic [`XLEN-1:0] HWDATA, input logic [3:0] HSIZED, output logic [`XLEN-1:0] HREADRam, output logic HRESPRam, HREADYRam ); logic [`XLEN/8-1:0] ByteMaskM; logic [31:0] HWADDR, A; logic prevHREADYRam, risingHREADYRam; logic initTrans; logic memwrite; logic [3:0] busycount; swbytemask swbytemask(.HSIZED, .HADDRD(HWADDR[2:0]), .ByteMask(ByteMaskM)); assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00); // *** this seems like a weird way to use reset flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELRam & HWRITE, memwrite); flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A); // busy FSM to extend READY signal always @(posedge HCLK, negedge HRESETn) if (~HRESETn) begin busycount <= 0; HREADYRam <= #1 0; end else begin if (initTrans) begin busycount <= 0; HREADYRam <= #1 0; end else if (~HREADYRam) begin if (busycount == 0) begin // Ram latency, for testing purposes. *** test with different values such as 2 HREADYRam <= #1 1; end else begin busycount <= busycount + 1; end end end assign HRESPRam = 0; // OK localparam ADDR_WDITH = $clog2(RANGE/8); localparam OFFSET = $clog2(`XLEN/8); // Rising HREADY edge detector // Indicates when ram is finishing up // Needed because HREADY may go high for other reasons, // and we only want to write data when finishing up. flopenr #(1) prevhreadyRamreg(HCLK,~HRESETn, 1'b1, HREADYRam,prevHREADYRam); assign risingHREADYRam = HREADYRam & ~prevHREADYRam; always @(posedge HCLK) HWADDR <= #1 A; bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH) memory(.clk(HCLK), .enaA(1'b1), .addrA(A[ADDR_WDITH+OFFSET-1:OFFSET]), .doutA(HREADRam), .enaB(memwrite & risingHREADYRam), .weB(ByteMaskM), .addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA)); endmodule