cvw/wally-pipelined/src/uncore/dtim.sv

120 lines
4.2 KiB
Systemverilog

///////////////////////////////////////////
// dtim.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Data tightly integrated memory
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module dtim #(parameter BASE=0, RANGE = 65535) (
input logic HCLK, HRESETn,
input logic HSELTim,
input logic [31:0] HADDR,
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
input logic [`XLEN-1:0] HWDATA,
output logic [`XLEN-1:0] HREADTim,
output logic HRESPTim, HREADYTim
);
localparam MemStartAddr = BASE>>(1+`XLEN/32);
localparam MemEndAddr = (RANGE+BASE)>>1+(`XLEN/32);
logic [`XLEN-1:0] RAM[BASE>>(1+`XLEN/32):(RANGE+BASE)>>1+(`XLEN/32)];
logic [31:0] HWADDR, A;
logic [`XLEN-1:0] HREADTim0;
// logic [`XLEN-1:0] write;
logic prevHREADYTim, risingHREADYTim;
logic initTrans;
logic [15:0] entry;
logic memread, memwrite;
logic [3:0] busycount;
assign initTrans = HREADY & HSELTim & (HTRANS != 2'b00);
// *** this seems like a weird way to use reset
flopenr #(1) memreadreg(HCLK, 1'b0, initTrans | ~HRESETn, HSELTim & ~HWRITE, memread);
flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELTim & HWRITE, memwrite);
flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A);
// busy FSM to extend READY signal
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
busycount <= 0;
HREADYTim <= #1 0;
end else begin
if (initTrans) begin
busycount <= 0;
HREADYTim <= #1 0;
end else if (~HREADYTim) begin
if (busycount == 0) begin // TIM latency, for testing purposes. *** test with different values such as 2
HREADYTim <= #1 1;
end else begin
busycount <= busycount + 1;
end
end
end
assign HRESPTim = 0; // OK
// Rising HREADY edge detector
// Indicates when dtim is finishing up
// Needed because HREADY may go high for other reasons,
// and we only want to write data when finishing up.
flopr #(1) prevhreadytimreg(HCLK,~HRESETn,HREADYTim,prevHREADYTim);
assign risingHREADYTim = HREADYTim & ~prevHREADYTim;
// Model memory read and write
/* -----\/----- EXCLUDED -----\/-----
integer index;
initial begin
for(index = MemStartAddr; index < MemEndAddr; index = index + 1) begin
RAM[index] <= {`XLEN{1'b0}};
end
end
-----/\----- EXCLUDED -----/\----- */
/* verilator lint_off WIDTH */
generate
if (`XLEN == 64) begin
always_ff @(posedge HCLK) begin
HWADDR <= #1 A;
HREADTim0 <= #1 RAM[A[31:3]];
if (memwrite & risingHREADYTim) RAM[HWADDR[31:3]] <= #1 HWDATA;
end
end else begin
always_ff @(posedge HCLK) begin
HWADDR <= #1 A;
HREADTim0 <= #1 RAM[A[31:2]];
if (memwrite & risingHREADYTim) RAM[HWADDR[31:2]] <= #1 HWDATA;
end
end
endgenerate
/* verilator lint_on WIDTH */
assign HREADTim = HREADYTim ? HREADTim0 : `XLEN'bz;
endmodule