forked from Github_Repos/cvw
202 lines
9.7 KiB
Systemverilog
202 lines
9.7 KiB
Systemverilog
///////////////////////////////////////////
|
|
// ahblite.sv
|
|
//
|
|
// Written: David_Harris@hmc.edu 9 January 2021
|
|
// Modified:
|
|
//
|
|
// Purpose: AHB Lite External Bus Unit
|
|
// See ARM_HIH0033A_AMBA_AHB-Lite_SPEC 1.0
|
|
// Arbitrates requests from instruction and data streams
|
|
// Connects hart to peripherals and I/O pins on SOC
|
|
// Bus width presently matches XLEN
|
|
// Anticipate replacing this with an AXI bus interface to communicate with FPGA DRAM/Flash controllers
|
|
//
|
|
// A component of the Wally configurable RISC-V project.
|
|
//
|
|
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
|
|
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
|
|
// is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
|
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
///////////////////////////////////////////
|
|
|
|
`include "wally-config.vh"
|
|
|
|
module ahblite (
|
|
input logic clk, reset,
|
|
input logic StallW, FlushW,
|
|
// Load control
|
|
input logic UnsignedLoadM,
|
|
input logic [1:0] AtomicM,
|
|
input logic [6:0] Funct7M,
|
|
// Signals from Instruction Cache
|
|
input logic [`XLEN-1:0] InstrPAdrF, // *** rename these to match block diagram
|
|
input logic InstrReadF,
|
|
output logic [`XLEN-1:0] InstrRData,
|
|
// Signals from Data Cache
|
|
input logic [`XLEN-1:0] MemPAdrM,
|
|
input logic MemReadM, MemWriteM,
|
|
input logic [`XLEN-1:0] WriteDataM,
|
|
input logic [1:0] MemSizeM,
|
|
// Signals from MMU
|
|
input logic [`XLEN-1:0] MMUPAdr,
|
|
input logic MMUTranslate, MMUTranslationComplete,
|
|
output logic [`XLEN-1:0] MMUReadPTE,
|
|
output logic MMUReady,
|
|
// Return from bus
|
|
output logic [`XLEN-1:0] ReadDataW,
|
|
// AHB-Lite external signals
|
|
input logic [`AHBW-1:0] HRDATA,
|
|
input logic HREADY, HRESP,
|
|
output logic HCLK, HRESETn,
|
|
output logic [31:0] HADDR,
|
|
output logic [`AHBW-1:0] HWDATA,
|
|
output logic HWRITE,
|
|
output logic [2:0] HSIZE,
|
|
output logic [2:0] HBURST,
|
|
output logic [3:0] HPROT,
|
|
output logic [1:0] HTRANS,
|
|
output logic HMASTLOCK,
|
|
// Delayed signals for writes
|
|
output logic [2:0] HADDRD,
|
|
output logic [3:0] HSIZED,
|
|
output logic HWRITED,
|
|
// Stalls
|
|
output logic InstrStall,/*InstrUpdate, */DataStall
|
|
// *** add a chip-level ready signal as part of handshake
|
|
);
|
|
|
|
logic GrantData;
|
|
logic [31:0] AccessAddress;
|
|
logic [2:0] AccessSize, PTESize, ISize;
|
|
logic [`AHBW-1:0] HRDATAMasked, ReadDataM, ReadDataNewW, ReadDataOldW, WriteData;
|
|
logic IReady, DReady;
|
|
logic CaptureDataM;
|
|
|
|
assign HCLK = clk;
|
|
assign HRESETn = ~reset;
|
|
|
|
// *** initially support AHBW = XLEN
|
|
|
|
// track bus state
|
|
// Data accesses have priority over instructions. However, if a data access comes
|
|
// while an instruction read is occuring, the instruction read finishes before
|
|
// the data access can take place.
|
|
typedef enum {IDLE, MEMREAD, MEMWRITE, INSTRREAD, INSTRREADC, ATOMICREAD, ATOMICWRITE, MMUTRANSLATE, MMUIDLE} statetype;
|
|
statetype BusState, NextBusState;
|
|
|
|
flopenl #(.TYPE(statetype)) busreg(HCLK, ~HRESETn, 1'b1, NextBusState, IDLE, BusState);
|
|
|
|
always_comb
|
|
case (BusState)
|
|
IDLE: if (MMUTranslate) NextBusState = MMUTRANSLATE;
|
|
else if (AtomicM[1]) NextBusState = ATOMICREAD;
|
|
else if (MemReadM) NextBusState = MEMREAD; // Memory has priority over instructions
|
|
else if (MemWriteM) NextBusState = MEMWRITE;
|
|
else if (InstrReadF) NextBusState = INSTRREAD;
|
|
else NextBusState = IDLE;
|
|
MMUTRANSLATE: if (~HREADY) NextBusState = MMUTRANSLATE;
|
|
else NextBusState = MMUIDLE;
|
|
// *** Could the MMUIDLE state just be the normal idle state?
|
|
// Do we trust MMUTranslate to be high exactly when we need translation?
|
|
MMUIDLE: if (~MMUTranslationComplete)
|
|
NextBusState = MMUTRANSLATE;
|
|
else if (AtomicM[1]) NextBusState = ATOMICREAD;
|
|
else if (MemReadM) NextBusState = MEMREAD; // Memory has priority over instructions
|
|
else if (MemWriteM) NextBusState = MEMWRITE;
|
|
else if (InstrReadF) NextBusState = INSTRREAD;
|
|
else NextBusState = IDLE;
|
|
ATOMICREAD: if (~HREADY) NextBusState = ATOMICREAD;
|
|
else NextBusState = ATOMICWRITE;
|
|
ATOMICWRITE: if (~HREADY) NextBusState = ATOMICWRITE;
|
|
else if (InstrReadF) NextBusState = INSTRREAD;
|
|
else NextBusState = IDLE;
|
|
MEMREAD: if (~HREADY) NextBusState = MEMREAD;
|
|
else if (InstrReadF) NextBusState = INSTRREADC;
|
|
else NextBusState = IDLE;
|
|
MEMWRITE: if (~HREADY) NextBusState = MEMWRITE;
|
|
else if (InstrReadF) NextBusState = INSTRREAD;
|
|
else NextBusState = IDLE;
|
|
INSTRREAD:
|
|
if (~HREADY) NextBusState = INSTRREAD;
|
|
else NextBusState = IDLE; // if (InstrReadF still high)
|
|
INSTRREADC: if (~HREADY) NextBusState = INSTRREADC; // "C" for "competing", meaning please don't mess up the memread in the W stage.
|
|
else NextBusState = IDLE;
|
|
endcase
|
|
|
|
// stall signals
|
|
assign #2 DataStall = (NextBusState == MEMREAD) || (NextBusState == MEMWRITE) ||
|
|
(NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE) ||
|
|
(NextBusState == MMUTRANSLATE) || (NextBusState == MMUIDLE);
|
|
// *** Could get finer grained stalling if we distinguish between MMU
|
|
// instruction address translation and data address translation
|
|
assign #1 InstrStall = (NextBusState == INSTRREAD) || (NextBusState == INSTRREADC) ||
|
|
(NextBusState == MMUTRANSLATE) || (NextBusState == MMUIDLE);
|
|
|
|
// bus outputs
|
|
assign #1 GrantData = (NextBusState == MEMREAD) || (NextBusState == MEMWRITE) ||
|
|
(NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE);
|
|
assign #1 AccessAddress = (GrantData) ? MemPAdrM[31:0] : InstrPAdrF[31:0];
|
|
assign #1 HADDR = (MMUTranslate) ? MMUPAdr[31:0] : AccessAddress;
|
|
generate
|
|
if (`XLEN == 32) assign PTESize = 3'b010; // in rv32, PTEs are 4 bytes
|
|
else assign PTESize = 3'b011; // in rv64, PTEs are 8 bytes
|
|
endgenerate
|
|
assign ISize = 3'b010; // 32 bit instructions for now; later improve for filling cache with full width; ignored on reads anyway
|
|
assign #1 AccessSize = (GrantData) ? {1'b0, MemSizeM} : ISize;
|
|
assign #1 HSIZE = (MMUTranslate) ? PTESize : AccessSize;
|
|
assign HBURST = 3'b000; // Single burst only supported; consider generalizing for cache fillsfH
|
|
assign HPROT = 4'b0011; // not used; see Section 3.7
|
|
assign HTRANS = (NextBusState != IDLE) ? 2'b10 : 2'b00; // NONSEQ if reading or writing, IDLE otherwise
|
|
assign HMASTLOCK = 0; // no locking supported
|
|
assign HWRITE = (NextBusState == MEMWRITE) || (NextBusState == ATOMICWRITE);
|
|
// delay write data by one cycle for
|
|
flop #(`XLEN) wdreg(HCLK, WriteData, HWDATA); // delay HWDATA by 1 cycle per spec; *** assumes AHBW = XLEN
|
|
// delay signals for subword writes
|
|
flop #(3) adrreg(HCLK, HADDR[2:0], HADDRD);
|
|
flop #(4) sizereg(HCLK, {UnsignedLoadM, HSIZE}, HSIZED);
|
|
flop #(1) writereg(HCLK, HWRITE, HWRITED);
|
|
|
|
// Route signals to Instruction and Data Caches
|
|
// *** assumes AHBW = XLEN
|
|
|
|
assign #1 MMUReady = (NextBusState == MMUIDLE);
|
|
|
|
assign InstrRData = HRDATA;
|
|
assign MMUReadPTE = HRDATA;
|
|
assign ReadDataM = HRDATAMasked; // changed from W to M dh 2/7/2021
|
|
assign CaptureDataM = ((BusState == MEMREAD) && (NextBusState != MEMREAD)) ||
|
|
((BusState == ATOMICREAD) && (NextBusState == ATOMICWRITE));
|
|
// We think this introduces an unnecessary cycle of latency in memory accesses
|
|
// *** can the following be simplified down to one register?
|
|
// *** examine more closely over summer?
|
|
flopenr #(`XLEN) ReadDataNewWReg(clk, reset, CaptureDataM, ReadDataM, ReadDataNewW);
|
|
flopenr #(`XLEN) ReadDataOldWReg(clk, reset, CaptureDataM, ReadDataNewW, ReadDataOldW);
|
|
assign ReadDataW = (BusState == INSTRREADC) ? ReadDataOldW : ReadDataNewW;
|
|
|
|
// Extract and sign-extend subwords if necessary
|
|
subwordread swr(.*);
|
|
|
|
// Handle AMO instructions if applicable
|
|
generate
|
|
if (`A_SUPPORTED) begin
|
|
logic [`XLEN-1:0] AMOResult;
|
|
// amoalu amoalu(.a(HRDATA), .b(WriteDataM), .funct(Funct7M), .width(MemSizeM),
|
|
// .result(AMOResult));
|
|
amoalu amoalu(.srca(ReadDataW), .srcb(WriteDataM), .funct(Funct7M), .width(MemSizeM),
|
|
.result(AMOResult));
|
|
mux2 #(`XLEN) wdmux(WriteDataM, AMOResult, AtomicM[1], WriteData);
|
|
end else
|
|
assign WriteData = WriteDataM;
|
|
endgenerate
|
|
|
|
endmodule
|