cvw/src/ieu/datapath.sv
2023-03-04 23:19:31 -08:00

148 lines
8.9 KiB
Systemverilog

///////////////////////////////////////////
// datapath.sv
//
// Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified:
//
// Purpose: Wally Integer Datapath
//
// Documentation: RISC-V System on Chip Design Chapter 4 (Figure 4.12)
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module datapath (
input logic clk, reset,
// Decode stage signals
input logic [2:0] ImmSrcD, // Selects type of immediate extension
input logic [31:0] InstrD, // Instruction in Decode stage
// Execute stage signals
input logic [`XLEN-1:0] PCE, // PC in Execute stage
input logic [`XLEN-1:0] PCLinkE, // PC + 4 (of instruction in Execute stage)
input logic [2:0] Funct3E, // Funct3 field of instruction in Execute stage
input logic StallE, FlushE, // Stall, flush Execute stage
input logic [1:0] ForwardAE, ForwardBE, // Forward ALU operands from later stages
input logic [2:0] ALUControlE, // Indicate operation ALU performs
input logic ALUSrcAE, ALUSrcBE, // ALU operands
input logic ALUResultSrcE, // Selects result to pass on to Memory stage
input logic [2:0] ALUSelectE, // ALU mux select signal
input logic JumpE, // Is a jump (j) instruction
input logic BranchSignedE, // Branch comparison operands are signed (if it's a branch)
input logic [1:0] BSelectE, // One hot encoding of ZBA_ZBB_ZBC_ZBS instruction
input logic [2:0] ZBBSelectE, // ZBB mux select signal
input logic [2:0] BALUControlE, // ALU Control signals for B instructions in Execute Stage
output logic [1:0] FlagsE, // Comparison flags ({eq, lt})
output logic [`XLEN-1:0] IEUAdrE, // Address computed by ALU
output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // ALU sources before the mux chooses between them and PCE to put in srcA/B
// Memory stage signals
input logic StallM, FlushM, // Stall, flush Memory stage
input logic FWriteIntM, FCvtIntW, // FPU writes integer register file, FPU converts float to int
input logic [`XLEN-1:0] FIntResM, // FPU integer result
output logic [`XLEN-1:0] SrcAM, // ALU's Source A in Memory stage to privilege unit for CSR writes
output logic [`XLEN-1:0] WriteDataM, // Write data in Memory stage
// Writeback stage signals
input logic StallW, FlushW, // Stall, flush Writeback stage
input logic RegWriteW, IntDivW, // Write register file, integer divide instruction
input logic SquashSCW, // Squash a store conditional when a conflict arose
input logic [2:0] ResultSrcW, // Select source of result to write back to register file
input logic [`XLEN-1:0] FCvtIntResW, // FPU convert fp to integer result
input logic [`XLEN-1:0] ReadDataW, // Read data from LSU
input logic [`XLEN-1:0] CSRReadValW, // CSR read result
input logic [`XLEN-1:0] MDUResultW, // MDU (Multiply/divide unit) result
input logic [`XLEN-1:0] FIntDivResultW, // FPU's integer divide result
// Hazard Unit signals
output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, // Register sources to read in Decode or Execute stage
output logic [4:0] RdE, RdM, RdW // Register destinations in Execute, Memory, or Writeback stage
);
// Fetch stage signals
// Decode stage signals
logic [`XLEN-1:0] R1D, R2D; // Read data from Rs1 (RD1), Rs2 (RD2)
logic [`XLEN-1:0] ImmExtD; // Extended immediate in Decode stage
logic [4:0] RdD; // Destination register in Decode stage
// Execute stage signals
logic [`XLEN-1:0] R1E, R2E; // Source operands read from register file
logic [`XLEN-1:0] ImmExtE; // Extended immediate in Execute stage
logic [`XLEN-1:0] SrcAE, SrcBE; // ALU operands
logic [`XLEN-1:0] ALUResultE, AltResultE, IEUResultE; // ALU result, Alternative result (ImmExtE or PC+4), result of execution stage
// Memory stage signals
logic [`XLEN-1:0] IEUResultM; // Result from execution stage
logic [`XLEN-1:0] IFResultM; // Result from either IEU or single-cycle FPU op writing an integer register
// Writeback stage signals
logic [`XLEN-1:0] SCResultW; // Store Conditional result
logic [`XLEN-1:0] ResultW; // Result to write to register file
logic [`XLEN-1:0] IFResultW; // Result from either IEU or single-cycle FPU op writing an integer register
logic [`XLEN-1:0] IFCvtResultW; // Result from IEU, signle-cycle FPU op, or 2-cycle FCVT float to int
logic [`XLEN-1:0] MulDivResultW; // Multiply always comes from MDU. Divide could come from MDU or FPU (when using fdivsqrt for integer division)
// Decode stage
assign Rs1D = InstrD[19:15];
assign Rs2D = InstrD[24:20];
assign RdD = InstrD[11:7];
regfile regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, R1D, R2D);
extend ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ImmExtD);
// Execute stage pipeline register and logic
flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, R1D, R1E);
flopenrc #(`XLEN) RD2EReg(clk, reset, FlushE, ~StallE, R2D, R2E);
flopenrc #(`XLEN) ImmExtEReg(clk, reset, FlushE, ~StallE, ImmExtD, ImmExtE);
flopenrc #(5) Rs1EReg(clk, reset, FlushE, ~StallE, Rs1D, Rs1E);
flopenrc #(5) Rs2EReg(clk, reset, FlushE, ~StallE, Rs2D, Rs2E);
flopenrc #(5) RdEReg(clk, reset, FlushE, ~StallE, RdD, RdE);
mux3 #(`XLEN) faemux(R1E, ResultW, IFResultM, ForwardAE, ForwardedSrcAE);
mux3 #(`XLEN) fbemux(R2E, ResultW, IFResultM, ForwardBE, ForwardedSrcBE);
comparator #(`XLEN) comp(ForwardedSrcAE, ForwardedSrcBE, BranchSignedE, FlagsE);
mux2 #(`XLEN) srcamux(ForwardedSrcAE, PCE, ALUSrcAE, SrcAE);
mux2 #(`XLEN) srcbmux(ForwardedSrcBE, ImmExtE, ALUSrcBE, SrcBE);
alu #(`XLEN) alu(SrcAE, SrcBE, ALUControlE, ALUSelectE, BSelectE, ZBBSelectE, Funct3E, FlagsE, BALUControlE, ALUResultE, IEUAdrE);
mux2 #(`XLEN) altresultmux(ImmExtE, PCLinkE, JumpE, AltResultE);
mux2 #(`XLEN) ieuresultmux(ALUResultE, AltResultE, ALUResultSrcE, IEUResultE);
// Memory stage pipeline register
flopenrc #(`XLEN) SrcAMReg(clk, reset, FlushM, ~StallM, SrcAE, SrcAM);
flopenrc #(`XLEN) IEUResultMReg(clk, reset, FlushM, ~StallM, IEUResultE, IEUResultM);
flopenrc #(5) RdMReg(clk, reset, FlushM, ~StallM, RdE, RdM);
flopenrc #(`XLEN) WriteDataMReg(clk, reset, FlushM, ~StallM, ForwardedSrcBE, WriteDataM);
// Writeback stage pipeline register and logic
flopenrc #(`XLEN) IFResultWReg(clk, reset, FlushW, ~StallW, IFResultM, IFResultW);
flopenrc #(5) RdWReg(clk, reset, FlushW, ~StallW, RdM, RdW);
// floating point inputs: FIntResM comes from fclass, fcmp, fmv; FCvtIntResW comes from fcvt
if (`F_SUPPORTED) begin:fpmux
mux2 #(`XLEN) resultmuxM(IEUResultM, FIntResM, FWriteIntM, IFResultM);
mux2 #(`XLEN) cvtresultmuxW(IFResultW, FCvtIntResW, FCvtIntW, IFCvtResultW);
if (`IDIV_ON_FPU) begin
mux2 #(`XLEN) divresultmuxW(MDUResultW, FIntDivResultW, IntDivW, MulDivResultW);
end else begin
assign MulDivResultW = MDUResultW;
end
end else begin:fpmux
assign IFResultM = IEUResultM; assign IFCvtResultW = IFResultW;
assign MulDivResultW = MDUResultW;
end
mux5 #(`XLEN) resultmuxW(IFCvtResultW, ReadDataW, CSRReadValW, MulDivResultW, SCResultW, ResultSrcW, ResultW);
// handle Store Conditional result if atomic extension supported
if (`A_SUPPORTED) assign SCResultW = {{(`XLEN-1){1'b0}}, SquashSCW};
else assign SCResultW = 0;
endmodule