/////////////////////////////////////////// // datapath.sv // // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu // Created: 9 January 2021 // Modified: // // Purpose: Wally Integer Datapath // // Documentation: RISC-V System on Chip Design Chapter 4 (Figure 4.12) // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module datapath ( input logic clk, reset, // Decode stage signals input logic [2:0] ImmSrcD, // Selects type of immediate extension input logic [31:0] InstrD, // Instruction in Decode stage // Execute stage signals input logic [`XLEN-1:0] PCE, // PC in Execute stage input logic [`XLEN-1:0] PCLinkE, // PC + 4 (of instruction in Execute stage) input logic [2:0] Funct3E, // Funct3 field of instruction in Execute stage input logic StallE, FlushE, // Stall, flush Execute stage input logic [1:0] ForwardAE, ForwardBE, // Forward ALU operands from later stages input logic [2:0] ALUControlE, // Indicate operation ALU performs input logic ALUSrcAE, ALUSrcBE, // ALU operands input logic ALUResultSrcE, // Selects result to pass on to Memory stage input logic [2:0] ALUSelectE, // ALU mux select signal input logic JumpE, // Is a jump (j) instruction input logic BranchSignedE, // Branch comparison operands are signed (if it's a branch) input logic [1:0] BSelectE, // One hot encoding of ZBA_ZBB_ZBC_ZBS instruction input logic [2:0] ZBBSelectE, // ZBB mux select signal input logic [2:0] BALUControlE, // ALU Control signals for B instructions in Execute Stage output logic [1:0] FlagsE, // Comparison flags ({eq, lt}) output logic [`XLEN-1:0] IEUAdrE, // Address computed by ALU output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // ALU sources before the mux chooses between them and PCE to put in srcA/B // Memory stage signals input logic StallM, FlushM, // Stall, flush Memory stage input logic FWriteIntM, FCvtIntW, // FPU writes integer register file, FPU converts float to int input logic [`XLEN-1:0] FIntResM, // FPU integer result output logic [`XLEN-1:0] SrcAM, // ALU's Source A in Memory stage to privilege unit for CSR writes output logic [`XLEN-1:0] WriteDataM, // Write data in Memory stage // Writeback stage signals input logic StallW, FlushW, // Stall, flush Writeback stage input logic RegWriteW, IntDivW, // Write register file, integer divide instruction input logic SquashSCW, // Squash a store conditional when a conflict arose input logic [2:0] ResultSrcW, // Select source of result to write back to register file input logic [`XLEN-1:0] FCvtIntResW, // FPU convert fp to integer result input logic [`XLEN-1:0] ReadDataW, // Read data from LSU input logic [`XLEN-1:0] CSRReadValW, // CSR read result input logic [`XLEN-1:0] MDUResultW, // MDU (Multiply/divide unit) result input logic [`XLEN-1:0] FIntDivResultW, // FPU's integer divide result // Hazard Unit signals output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, // Register sources to read in Decode or Execute stage output logic [4:0] RdE, RdM, RdW // Register destinations in Execute, Memory, or Writeback stage ); // Fetch stage signals // Decode stage signals logic [`XLEN-1:0] R1D, R2D; // Read data from Rs1 (RD1), Rs2 (RD2) logic [`XLEN-1:0] ImmExtD; // Extended immediate in Decode stage logic [4:0] RdD; // Destination register in Decode stage // Execute stage signals logic [`XLEN-1:0] R1E, R2E; // Source operands read from register file logic [`XLEN-1:0] ImmExtE; // Extended immediate in Execute stage logic [`XLEN-1:0] SrcAE, SrcBE; // ALU operands logic [`XLEN-1:0] ALUResultE, AltResultE, IEUResultE; // ALU result, Alternative result (ImmExtE or PC+4), result of execution stage // Memory stage signals logic [`XLEN-1:0] IEUResultM; // Result from execution stage logic [`XLEN-1:0] IFResultM; // Result from either IEU or single-cycle FPU op writing an integer register // Writeback stage signals logic [`XLEN-1:0] SCResultW; // Store Conditional result logic [`XLEN-1:0] ResultW; // Result to write to register file logic [`XLEN-1:0] IFResultW; // Result from either IEU or single-cycle FPU op writing an integer register logic [`XLEN-1:0] IFCvtResultW; // Result from IEU, signle-cycle FPU op, or 2-cycle FCVT float to int logic [`XLEN-1:0] MulDivResultW; // Multiply always comes from MDU. Divide could come from MDU or FPU (when using fdivsqrt for integer division) // Decode stage assign Rs1D = InstrD[19:15]; assign Rs2D = InstrD[24:20]; assign RdD = InstrD[11:7]; regfile regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, R1D, R2D); extend ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ImmExtD); // Execute stage pipeline register and logic flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, R1D, R1E); flopenrc #(`XLEN) RD2EReg(clk, reset, FlushE, ~StallE, R2D, R2E); flopenrc #(`XLEN) ImmExtEReg(clk, reset, FlushE, ~StallE, ImmExtD, ImmExtE); flopenrc #(5) Rs1EReg(clk, reset, FlushE, ~StallE, Rs1D, Rs1E); flopenrc #(5) Rs2EReg(clk, reset, FlushE, ~StallE, Rs2D, Rs2E); flopenrc #(5) RdEReg(clk, reset, FlushE, ~StallE, RdD, RdE); mux3 #(`XLEN) faemux(R1E, ResultW, IFResultM, ForwardAE, ForwardedSrcAE); mux3 #(`XLEN) fbemux(R2E, ResultW, IFResultM, ForwardBE, ForwardedSrcBE); comparator #(`XLEN) comp(ForwardedSrcAE, ForwardedSrcBE, BranchSignedE, FlagsE); mux2 #(`XLEN) srcamux(ForwardedSrcAE, PCE, ALUSrcAE, SrcAE); mux2 #(`XLEN) srcbmux(ForwardedSrcBE, ImmExtE, ALUSrcBE, SrcBE); alu #(`XLEN) alu(SrcAE, SrcBE, ALUControlE, ALUSelectE, BSelectE, ZBBSelectE, Funct3E, FlagsE, BALUControlE, ALUResultE, IEUAdrE); mux2 #(`XLEN) altresultmux(ImmExtE, PCLinkE, JumpE, AltResultE); mux2 #(`XLEN) ieuresultmux(ALUResultE, AltResultE, ALUResultSrcE, IEUResultE); // Memory stage pipeline register flopenrc #(`XLEN) SrcAMReg(clk, reset, FlushM, ~StallM, SrcAE, SrcAM); flopenrc #(`XLEN) IEUResultMReg(clk, reset, FlushM, ~StallM, IEUResultE, IEUResultM); flopenrc #(5) RdMReg(clk, reset, FlushM, ~StallM, RdE, RdM); flopenrc #(`XLEN) WriteDataMReg(clk, reset, FlushM, ~StallM, ForwardedSrcBE, WriteDataM); // Writeback stage pipeline register and logic flopenrc #(`XLEN) IFResultWReg(clk, reset, FlushW, ~StallW, IFResultM, IFResultW); flopenrc #(5) RdWReg(clk, reset, FlushW, ~StallW, RdM, RdW); // floating point inputs: FIntResM comes from fclass, fcmp, fmv; FCvtIntResW comes from fcvt if (`F_SUPPORTED) begin:fpmux mux2 #(`XLEN) resultmuxM(IEUResultM, FIntResM, FWriteIntM, IFResultM); mux2 #(`XLEN) cvtresultmuxW(IFResultW, FCvtIntResW, FCvtIntW, IFCvtResultW); if (`IDIV_ON_FPU) begin mux2 #(`XLEN) divresultmuxW(MDUResultW, FIntDivResultW, IntDivW, MulDivResultW); end else begin assign MulDivResultW = MDUResultW; end end else begin:fpmux assign IFResultM = IEUResultM; assign IFCvtResultW = IFResultW; assign MulDivResultW = MDUResultW; end mux5 #(`XLEN) resultmuxW(IFCvtResultW, ReadDataW, CSRReadValW, MulDivResultW, SCResultW, ResultSrcW, ResultW); // handle Store Conditional result if atomic extension supported if (`A_SUPPORTED) assign SCResultW = {{(`XLEN-1){1'b0}}, SquashSCW}; else assign SCResultW = 0; endmodule