cvw/pipelined/src/fpu/fdivsqrtfsm.sv
2022-08-29 12:01:09 -07:00

117 lines
4.7 KiB
Systemverilog

///////////////////////////////////////////
// fdivsqrtfsm.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, Cedar Turek
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module fdivsqrtfsm(
input logic clk,
input logic reset,
input logic [`DIVb+3:0] NextWSN, NextWCN, WS, WC,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
input logic XNaNE, YNaNE,
input logic DivStart,
input logic XsE,
input logic SqrtE,
input logic SqrtM,
input logic StallE,
input logic StallM,
input logic [`DIVN-2:0] D, // U0.N-1
input logic [`DIVb+3:0] StickyWSA,
input logic [`DURLEN-1:0] Dur,
input logic [`DIVb:0] LastSM,
input logic [`DIVb:0] FirstSM,
input logic [`DIVb-1:0] LastC,
input logic [`DIVb-1:0] FirstC,
input logic [`DIVCOPIES-1:0] qn,
output logic [`DURLEN-1:0] EarlyTermShiftE,
output logic DivSE,
output logic DivDone,
output logic NegSticky,
output logic DivBusy
);
typedef enum logic [1:0] {IDLE, BUSY, DONE} statetype;
statetype state;
logic [`DURLEN-1:0] step;
logic WZero;
//logic [$clog2(`DIVLEN/2+3)-1:0] Dur;
logic [`DIVb+3:0] W;
logic SpecialCase;
logic WZeroDelayed; // *** later remove
//flopen #($clog2(`DIVLEN/2+3)) durflop(clk, DivStart, CalcDur, Dur);
assign DivBusy = (state == BUSY);
// calculate sticky bit
// - there is a chance that a value is subtracted infinitly, resulting in an exact QM result
// this is only a problem on radix 2 (and possibly maximally redundant 4) since minimally redundant
// radix-4 division can't create a QM that continually adds 0's
if (`RADIX == 2) begin
logic [`DIVb+3:0] FZero, FSticky;
logic [`DIVb+2:0] LastK, FirstK;
assign LastK = ({3'b111, LastC} & ~({3'b111, LastC} << 1));
assign FirstK = ({3'b111, FirstC<<1} & ~({3'b111, FirstC<<1} << 1));
assign FZero = SqrtM ? {LastSM[`DIVb], LastSM, 2'b0} | {LastK,1'b0} : {3'b1,D,{`DIVb-`DIVN+2{1'b0}}};
assign FSticky = SqrtM ? {FirstSM[`DIVb], FirstSM, 2'b0} | {FirstK,1'b0} : {3'b1,D,{`DIVb-`DIVN+2{1'b0}}};
// *** |... for continual -1 is not efficent fix - also only needed for radix-2
assign WZero = ((NextWSN^NextWCN)=={NextWSN[`DIVb+2:0]|NextWCN[`DIVb+2:0], 1'b0})|(((NextWSN+NextWCN+FZero)==0)&qn[`DIVCOPIES-1]);
assign DivSE = |W&~((W+FSticky)==0); //***not efficent fix == and need the & qn
end else begin
assign WZero = ((NextWSN^NextWCN)=={NextWSN[`DIVb+2:0]|NextWCN[`DIVb+2:0], 1'b0});
assign DivSE = |W;
end
flopr #(1) WZeroReg(clk, reset | DivStart, WZero, WZeroDelayed);
assign DivDone = (state == DONE) | WZeroDelayed;
assign W = WC+WS;
assign NegSticky = W[`DIVb+3];
assign EarlyTermShiftE = step;
// terminate immediately on special cases
assign SpecialCase = XZeroE | (YZeroE&~SqrtE) | XInfE | YInfE | XNaNE | YNaNE | (XsE&SqrtE);
always_ff @(posedge clk) begin
if (reset) begin
state <= #1 IDLE;
end else if (DivStart&~StallE) begin
step <= Dur;
if (SpecialCase) state <= #1 DONE;
else state <= #1 BUSY;
end else if (DivDone) begin
if (StallM) state <= #1 DONE;
else state <= #1 IDLE;
end else if (state == BUSY) begin
if (step == 0) begin
state <= #1 DONE;
end
step <= step - 1;
end
end
endmodule