cvw/wally-pipelined/src/uncore/uncore.sv

146 lines
6.4 KiB
Systemverilog

///////////////////////////////////////////
// uncore.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified: Ben Bracker 6 Mar 2021 to better fit AMBA 3 AHB-Lite spec
//
// Purpose: System-on-Chip components outside the core (hart)
// Memories, peripherals, external bus control
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
// *** need idiom to map onto cache RAM with byte writes
// *** and use memread signal to reduce power when reads aren't needed
module uncore (
// AHB Bus Interface
input logic HCLK, HRESETn,
input logic [31:0] HADDR,
input logic [`AHBW-1:0] HWDATAIN,
input logic HWRITE,
input logic [2:0] HSIZE,
input logic [2:0] HBURST,
input logic [3:0] HPROT,
input logic [1:0] HTRANS,
input logic HMASTLOCK,
input logic [`AHBW-1:0] HRDATAEXT,
input logic HREADYEXT, HRESPEXT,
output logic [`AHBW-1:0] HRDATA,
output logic HREADY, HRESP,
// delayed signals
input logic [2:0] HADDRD,
input logic [3:0] HSIZED,
input logic HWRITED,
// bus interface
// PMA checker now handles access faults. *** This can be deleted
// output logic DataAccessFaultM,
// peripheral pins
output logic TimerIntM, SwIntM, ExtIntM,
input logic [31:0] GPIOPinsIn,
output logic [31:0] GPIOPinsOut, GPIOPinsEn,
input logic UARTSin,
output logic UARTSout,
output logic [63:0] MTIME_CLINT, MTIMECMP_CLINT
);
logic [`XLEN-1:0] HWDATA;
logic [`XLEN-1:0] HREADTim, HREADCLINT, HREADPLIC, HREADGPIO, HREADUART;
logic [6:0] HSELRegions;
logic HSELTim, HSELCLINT, HSELPLIC, HSELGPIO, PreHSELUART, HSELUART;
logic HSELTimD, HSELCLINTD, HSELPLICD, HSELGPIOD, HSELUARTD;
logic HRESPTim, HRESPCLINT, HRESPPLIC, HRESPGPIO, HRESPUART;
logic HREADYTim, HREADYCLINT, HREADYPLIC, HREADYGPIO, HREADYUART;
logic [`XLEN-1:0] HREADBootTim;
logic HSELBootTim, HSELBootTimD, HRESPBootTim, HREADYBootTim;
logic HSELNoneD;
logic [1:0] MemRWboottim;
logic UARTIntr,GPIOIntr;
// Determine which region of physical memory (if any) is being accessed
// Use a trimmed down portion of the PMA checker - only the address decoders
// Set access types to all 1 as don't cares because the MMU has already done access checking
adrdecs adrdecs({{(`PA_BITS-32){1'b0}}, HADDR}, 1'b1, 1'b1, 1'b1, HSIZE[1:0], HSELRegions);
// unswizzle HSEL signals
assign {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC} = HSELRegions[5:0];
// subword accesses: converts HWDATAIN to HWDATA
subwordwrite sww(.*);
generate
// tightly integrated memory
dtim #(.BASE(`TIM_BASE), .RANGE(`TIM_RANGE)) dtim (.*);
if (`BOOTTIM_SUPPORTED) begin : bootdtim
dtim #(.BASE(`BOOTTIM_BASE), .RANGE(`BOOTTIM_RANGE)) bootdtim(.HSELTim(HSELBootTim), .HREADTim(HREADBootTim), .HRESPTim(HRESPBootTim), .HREADYTim(HREADYBootTim), .*);
end
// memory-mapped I/O peripherals
if (`CLINT_SUPPORTED == 1) begin : clint
clint clint(.HADDR(HADDR[15:0]), .MTIME(MTIME_CLINT), .MTIMECMP(MTIMECMP_CLINT), .*);
end else begin : clint
assign MTIME_CLINT = 0; assign MTIMECMP_CLINT = 0;
assign TimerIntM = 0; assign SwIntM = 0;
end
if (`PLIC_SUPPORTED == 1) begin : plic
plic plic(.HADDR(HADDR[27:0]), .*);
end else begin : plic
assign ExtIntM = 0;
end
if (`GPIO_SUPPORTED == 1) begin : gpio
gpio gpio(.HADDR(HADDR[7:0]), .*);
end else begin : gpio
assign GPIOPinsOut = 0; assign GPIOPinsEn = 0; assign GPIOIntr = 0;
end
if (`UART_SUPPORTED == 1) begin : uart
uart uart(.HADDR(HADDR[2:0]), .TXRDYb(), .RXRDYb(), .INTR(UARTIntr), .SIN(UARTSin), .SOUT(UARTSout),
.DSRb(1'b1), .DCDb(1'b1), .CTSb(1'b0), .RIb(1'b1),
.RTSb(), .DTRb(), .OUT1b(), .OUT2b(), .*);
end else begin : uart
assign UARTSout = 0; assign UARTIntr = 0;
end
endgenerate
// mux could also include external memory
// AHB Read Multiplexer
assign HRDATA = ({`XLEN{HSELTimD}} & HREADTim) |
({`XLEN{HSELCLINTD}} & HREADCLINT) |
({`XLEN{HSELPLICD}} & HREADPLIC) |
({`XLEN{HSELGPIOD}} & HREADGPIO) |
({`XLEN{HSELBootTimD}} & HREADBootTim) |
({`XLEN{HSELUARTD}} & HREADUART);
assign HRESP = HSELTimD & HRESPTim |
HSELCLINTD & HRESPCLINT |
HSELPLICD & HRESPPLIC |
HSELGPIOD & HRESPGPIO |
HSELBootTimD & HRESPBootTim |
HSELUARTD & HRESPUART;
assign HREADY = HSELTimD & HREADYTim |
HSELCLINTD & HREADYCLINT |
HSELPLICD & HREADYPLIC |
HSELGPIOD & HREADYGPIO |
HSELBootTimD & HREADYBootTim |
HSELUARTD & HREADYUART |
HSELNoneD; // don't lock up the bus if no region is being accessed
// Address Decoder Delay (figure 4-2 in spec)
flopr #(7) hseldelayreg(HCLK, ~HRESETn, HSELRegions, {HSELNoneD, HSELBootTimD, HSELTimD, HSELCLINTD, HSELGPIOD, HSELUARTD, HSELPLICD});
endmodule