cvw/wally-pipelined/src/uncore/dtim.sv
2021-03-01 18:50:42 +00:00

108 lines
3.7 KiB
Systemverilog

///////////////////////////////////////////
// dtim.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Data tightly integrated memory
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module dtim #(parameter BASE=0, RANGE = 65535) (
input logic HCLK, HRESETn,
input logic [1:0] MemRWtim,
input logic [31:0] HADDR,
input logic [`XLEN-1:0] HWDATA,
input logic HSELTim,
output logic [`XLEN-1:0] HREADTim,
output logic HRESPTim, HREADYTim
);
//logic [`XLEN-1:0] RAM[0:65535];
logic [`XLEN-1:0] RAM[BASE>>(1+`XLEN/32):(RANGE+BASE)>>1+(`XLEN/32)];
logic [31:0] HWADDR;
logic [`XLEN-1:0] HREADTim0;
// logic [`XLEN-1:0] write;
logic [15:0] entry;
logic memread, memwrite;
logic [3:0] busycount;
// busy FSM to extend READY signal
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
HREADYTim <= 1;
end else begin
if (HREADYTim & HSELTim) begin
busycount <= 0;
HREADYTim <= #1 0;
end else if (~HREADYTim) begin
if (busycount == 2) begin // TIM latency, for testing purposes
HREADYTim <= #1 1;
end else begin
busycount <= busycount + 1;
end
end
end
/* always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
HREADYTim <= 0;
end else begin
HREADYTim <= HSELTim; // always respond one cycle later
end */
assign memread = MemRWtim[1];
assign memwrite = MemRWtim[0];
// always_ff @(posedge HCLK)
// memwrite <= MemRWtim[0]; // delay memwrite to write phase
assign HRESPTim = 0; // OK
// assign HREADYTim = 1; // Respond immediately; *** extend this
// Model memory read and write
generate
if (`XLEN == 64) begin
// always_ff @(negedge HCLK)
// if (memwrite) RAM[HWADDR[31:3]] <= HWDATA;
always_ff @(posedge HCLK) begin
//if (memwrite) RAM[HADDR[31:3]] <= HWDATA;
HWADDR <= HADDR;
HREADTim0 <= RAM[HADDR[31:3]];
if (memwrite && HREADYTim) RAM[HWADDR[31:3]] <= HWDATA;
end
end else begin
// always_ff @(negedge HCLK)
// if (memwrite) RAM[HWADDR[31:2]] <= HWDATA;
always_ff @(posedge HCLK) begin
//if (memwrite) RAM[HADDR[31:2]] <= HWDATA;
HWADDR <= HADDR;
HREADTim0 <= RAM[HADDR[31:2]];
if (memwrite && HREADYTim) RAM[HWADDR[31:2]] <= HWDATA;
end
end
endgenerate
assign HREADTim = HREADYTim ? HREADTim0 : 'bz;
endmodule