cvw/pipelined/src/fpu/qsel.sv
2022-08-20 00:53:45 +00:00

198 lines
6.8 KiB
Systemverilog

///////////////////////////////////////////
// srt.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module qsel2 ( // *** eventually just change to 4 bits
input logic [3:0] ps, pc,
output logic qp, qz//, qn
);
logic [3:0] p, g;
logic magnitude, sign, cout;
// The quotient selection logic is presented for simplicity, not
// for efficiency. You can probably optimize your logic to
// select the proper divisor with less delay.
// Qmient equations from EE371 lecture notes 13-20
assign p = ps ^ pc;
assign g = ps & pc;
assign magnitude = ~(&p[2:0]);
assign cout = g[2] | (p[2] & (g[1] | p[1] & g[0]));
assign sign = p[3] ^ cout;
/* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) &
(ps[52]^pc[52]));
assign #1 sign = (ps[55]^pc[55])^
(ps[54] & pc[54] | ((ps[54]^pc[54]) &
(ps[53]&pc[53] | ((ps[53]^pc[53]) &
(ps[52]&pc[52]))))); */
// Produce quotient = +1, 0, or -1
assign qp = magnitude & ~sign;
assign qz = ~magnitude;
// assign #1 qn = magnitude & sign;
endmodule
////////////////////////////////////
// Adder Input Generation, Radix 2 //
////////////////////////////////////
module fgen2 (
input logic sp, sz,
input logic [`DIVb-1:0] C,
input logic [`DIVb:0] S, SM,
output logic [`DIVb+3:0] F
);
logic [`DIVb+3:0] FP, FN, FZ;
logic [`DIVb+3:0] SExt, SMExt, CExt;
assign SExt = {3'b0, S};
assign SMExt = {3'b0, SM};
assign CExt = {4'hf, C};
// Generate for both positive and negative bits
assign FP = ~(SExt << 1) & CExt;
assign FN = (SMExt << 1) | (CExt & ~(CExt << 2));
assign FZ = '0;
// Choose which adder input will be used
always_comb
if (sp) F = FP;
else if (sz) F = FZ;
else F = FN;
endmodule
module qsel4 (
input logic [`DIVN-2:0] D,
input logic [`DIVb+3:0] WS, WC,
input logic Sqrt,
output logic [3:0] q
);
logic [6:0] Wmsbs;
logic [7:0] PreWmsbs;
logic [2:0] Dmsbs;
assign PreWmsbs = WC[`DIVb+3:`DIVb-4] + WS[`DIVb+3:`DIVb-4];
assign Wmsbs = PreWmsbs[7:1];
assign Dmsbs = D[`DIVN-2:`DIVN-4];//|{3{D[`DIVN-2]&Sqrt}};
// D = 0001.xxx...
// Dmsbs = | |
// W = xxxx.xxx...
// Wmsbs = | |
logic [3:0] QSel4[1023:0];
always_comb begin
integer d, w, i, w2;
for(d=0; d<8; d++)
for(w=0; w<128; w++)begin
i = d*128+w;
w2 = w-128*(w>=64); // convert to two's complement
case(d)
0: if($signed(w2)>=$signed(12)) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-4) QSel4[i] = 4'b0000;
else if(w2>=-13) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
1: if(w2>=14) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-5) QSel4[i] = 4'b0000; // was -6
else if(~Sqrt&(w2>=-15)) QSel4[i] = 4'b0010; // divide case
else if( Sqrt&(w2>=-14)) QSel4[i] = 4'b0010; // sqrt case
else QSel4[i] = 4'b0001;
2: if(w2>=15) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-16) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
3: if(w2>=16) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-17) QSel4[i] = 4'b0010; // was -18
else QSel4[i] = 4'b0001;
4: if(w2>=18) QSel4[i] = 4'b1000;
else if(w2>=6) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000; // was -8
else if(~Sqrt&(w2>=-20)) QSel4[i] = 4'b0010; // divide case
else if( Sqrt&(w2>=-18)) QSel4[i] = 4'b0010; // sqrt case
else QSel4[i] = 4'b0001;
5: if(w2>=20) QSel4[i] = 4'b1000;
else if(w2>=6) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-20) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
6: if(w2>=20) QSel4[i] = 4'b1000;
else if(w2>=8) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-22) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
7: if(w2>=22) QSel4[i] = 4'b1000; // was 24
else if(w2>=8) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-23) QSel4[i] = 4'b0010; // was -24 ***use -22
else QSel4[i] = 4'b0001;
endcase
end
end
assign q = QSel4[{Dmsbs,Wmsbs}];
endmodule
////////////////////////////////////
// Adder Input Generation, Radix 4 //
////////////////////////////////////
module fgen4 (
input logic [3:0] s,
input logic [`DIVb+3:0] C, S, SM,
output logic [`DIVb+3:0] F
);
logic [`DIVb+3:0] F2, F1, F0, FN1, FN2;
// Generate for both positive and negative bits
assign F2 = (~S << 2) & (C << 2);
assign F1 = ~(S << 1) & C;
assign F0 = '0;
assign FN1 = (SM << 1) | (C & ~(C << 3));
assign FN2 = (SM << 2) | ((C << 2)&~(C << 4));
// Choose which adder input will be used
always_comb
if (s[3]) F = F2;
else if (s[2]) F = F1;
else if (s[1]) F = FN1;
else if (s[0]) F = FN2;
else F = F0;
// assign F = sp ? FP : (sn ? FN : FZ);
endmodule