Refactored pmachecker to have adrdecs used in uncore

This commit is contained in:
David Harris 2021-06-23 01:41:00 -04:00
parent 6be0a3b8df
commit fa51ab9f68
8 changed files with 433 additions and 17 deletions

View File

@ -0,0 +1,184 @@
///////////////////////////////////////////
// dcache.sv
//
// Written: jaallen@g.hmc.edu 2021-04-15
// Modified:
//
// Purpose: Cache memory for the dmem so it can access memory less often, saving cycles
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module dcache(
// Basic pipeline stuff
input logic clk, reset,
input logic StallW,
input logic FlushW,
// Upper bits of physical address
input logic [`PA_BITS-1:12] UpperPAdrM,
// Lower 12 bits of virtual address, since it's faster this way
input logic [11:0] LowerVAdrM,
// Write to the dcache
input logic [`XLEN-1:0] DCacheWriteDataM,
input logic DCacheReadM, DCacheWriteM,
// Data read in from the ebu unit
input logic [`XLEN-1:0] ReadDataW,
input logic MemAckW,
// Access requested from the ebu unit
output logic [`PA_BITS-1:0] MemPAdrM,
output logic MemReadM, MemWriteM,
// High if the dcache is requesting a stall
output logic DCacheStallW,
// The data that was requested from the cache
output logic [`XLEN-1:0] DCacheReadW
);
// Configuration parameters
// TODO Move these to a config file
localparam integer DCACHELINESIZE = 256;
localparam integer DCACHENUMLINES = 512;
// Input signals to cache memory
logic FlushMem;
logic [`PA_BITS-1:12] DCacheMemUpperPAdr;
logic [11:0] DCacheMemLowerAdr;
logic DCacheMemWriteEnable;
logic [DCACHELINESIZE-1:0] DCacheMemWriteData;
logic [`XLEN-1:0] DCacheMemWritePAdr;
logic EndFetchState;
// Output signals from cache memory
logic [`XLEN-1:0] DCacheMemReadData;
logic DCacheMemReadValid;
wtdirectmappedmem #(.LINESIZE(DCACHELINESIZE), .NUMLINES(DCACHENUMLINES), .WORDSIZE(`XLEN)) cachemem(
.*,
// Stall it if the pipeline is stalled, unless we're stalling it and we're ending our stall
.stall(StallW),
.flush(FlushMem),
.ReadUpperPAdr(DCacheMemUpperPAdr),
.ReadLowerAdr(DCacheMemLowerAdr),
.LoadEnable(DCacheMemWriteEnable),
.LoadLine(DCacheMemWriteData),
.LoadPAdr(DCacheMemWritePAdr),
.DataWord(DCacheMemReadData),
.DataValid(DCacheMemReadValid),
.WriteEnable(0),
.WriteWord(0),
.WritePAdr(0),
.WriteSize(2'b10)
);
dcachecontroller #(.LINESIZE(DCACHELINESIZE)) controller(.*);
// For now, assume no writes to executable memory
assign FlushMem = 1'b0;
endmodule
module dcachecontroller #(parameter LINESIZE = 256) (
// Inputs from pipeline
input logic clk, reset,
input logic StallW,
input logic FlushW,
// Input the address to read
// The upper bits of the physical pc
input logic [`PA_BITS-1:12] DCacheMemUpperPAdr,
// The lower bits of the virtual pc
input logic [11:0] DCacheMemLowerAdr,
// Signals to/from cache memory
// The read coming out of it
input logic [`XLEN-1:0] DCacheMemReadData,
input logic DCacheMemReadValid,
// Load data into the cache
output logic DCacheMemWriteEnable,
output logic [LINESIZE-1:0] DCacheMemWriteData,
output logic [`XLEN-1:0] DCacheMemWritePAdr,
// The read that was requested
output logic [31:0] DCacheReadW,
// Outputs to pipeline control stuff
output logic DCacheStallW, EndFetchState,
// Signals to/from ahblite interface
// A read containing the requested data
input logic [`XLEN-1:0] ReadDataW,
input logic MemAckW,
// The read we request from main memory
output logic [`PA_BITS-1:0] MemPAdrM,
output logic MemReadM, MemWriteM
);
// Cache fault signals
logic FaultStall;
// Handle happy path (data in cache)
always_comb begin
DCacheReadW = DCacheMemReadData;
end
// Handle cache faults
localparam integer WORDSPERLINE = LINESIZE/`XLEN;
localparam integer LOGWPL = $clog2(WORDSPERLINE);
localparam integer OFFSETWIDTH = $clog2(LINESIZE/8);
logic FetchState, BeginFetchState;
logic [LOGWPL:0] FetchWordNum, NextFetchWordNum;
logic [`PA_BITS-1:0] LineAlignedPCPF;
flopr #(1) FetchStateFlop(clk, reset, BeginFetchState | (FetchState & ~EndFetchState), FetchState);
flopr #(LOGWPL+1) FetchWordNumFlop(clk, reset, NextFetchWordNum, FetchWordNum);
genvar i;
generate
for (i=0; i < WORDSPERLINE; i++) begin
flopenr #(`XLEN) flop(clk, reset, FetchState & (i == FetchWordNum), ReadDataW, DCacheMemWriteData[(i+1)*`XLEN-1:i*`XLEN]);
end
endgenerate
// Enter the fetch state when we hit a cache fault
always_comb begin
BeginFetchState = ~DCacheMemReadValid & ~FetchState & (FetchWordNum == 0);
end
// Exit the fetch state once the cache line has been loaded
flopr #(1) EndFetchStateFlop(clk, reset, DCacheMemWriteEnable, EndFetchState);
// Machinery to request the correct addresses from main memory
always_comb begin
MemReadM = FetchState & ~EndFetchState & ~DCacheMemWriteEnable;
LineAlignedPCPF = {DCacheMemUpperPAdr, DCacheMemLowerAdr[11:OFFSETWIDTH], {OFFSETWIDTH{1'b0}}};
MemPAdrM = LineAlignedPCPF + FetchWordNum*(`XLEN/8);
NextFetchWordNum = FetchState ? FetchWordNum+MemAckW : {LOGWPL+1{1'b0}};
end
// Write to cache memory when we have the line here
always_comb begin
DCacheMemWritePAdr = LineAlignedPCPF;
DCacheMemWriteEnable = FetchWordNum == {1'b1, {LOGWPL{1'b0}}} & FetchState & ~EndFetchState;
end
// Stall the pipeline while loading a new line from memory
always_comb begin
DCacheStallW = FetchState | ~DCacheMemReadValid;
end
endmodule

View File

@ -0,0 +1,197 @@
///////////////////////////////////////////
// lsu.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Load/Store Unit
// Top level of the memory-stage hart logic
// Contains data cache, DTLB, subword read/write datapath, interface to external bus
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
// *** Ross Thompson amo misalignment check?
module lsu (
input logic clk, reset,
input logic StallM, FlushM, StallW, FlushW,
//output logic DataStall,
// Memory Stage
input logic [1:0] MemRWM,
input logic [`XLEN-1:0] MemAdrM,
input logic [2:0] Funct3M,
//input logic [`XLEN-1:0] ReadDataW,
input logic [`XLEN-1:0] WriteDataM,
input logic [1:0] AtomicM,
input logic CommitM,
output logic [`PA_BITS-1:0] MemPAdrM,
output logic MemReadM, MemWriteM,
output logic [1:0] AtomicMaskedM,
output logic DataMisalignedM,
output logic CommittedM,
// Writeback Stage
input logic MemAckW,
input logic [`XLEN-1:0] ReadDataW,
output logic SquashSCW,
// faults
input logic NonBusTrapM,
input logic DataAccessFaultM,
output logic DTLBLoadPageFaultM, DTLBStorePageFaultM,
output logic LoadMisalignedFaultM, LoadAccessFaultM,
output logic StoreMisalignedFaultM, StoreAccessFaultM,
// mmu management
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] PageTableEntryM,
input logic [1:0] PageTypeM,
input logic [`XLEN-1:0] SATP_REGW,
input logic STATUS_MXR, STATUS_SUM,
input logic DTLBWriteM, DTLBFlushM,
output logic DTLBMissM, DTLBHitM,
// PMA/PMP (inside mmu) signals
input logic [31:0] HADDR, // *** replace all of these H inputs with physical adress once pma checkers have been edited to use paddr as well.
input logic [2:0] HSIZE, HBURST,
input logic HWRITE,
input logic AtomicAccessM, WriteAccessM, ReadAccessM, // execute access is hardwired to zero in this mmu because we're only working with data in the M stage.
input logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW, // *** all of these come from the privileged unit, so thwyre gonna have to come over into ifu and dmem
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0], // *** this one especially has a large note attached to it in pmpchecker.
output logic PMALoadAccessFaultM, PMAStoreAccessFaultM,
output logic PMPLoadAccessFaultM, PMPStoreAccessFaultM, // *** can these be parameterized? we dont need the m stage ones for the immu and vice versa.
output logic DSquashBusAccessM,
output logic [5:0] DHSELRegionsM
);
logic SquashSCM;
logic DTLBPageFaultM;
logic MemAccessM;
logic [1:0] CurrState, NextState;
logic preCommittedM;
localparam STATE_READY = 0;
localparam STATE_FETCH = 1;
localparam STATE_FETCH_AMO = 2;
localparam STATE_STALLED = 3;
logic PMPInstrAccessFaultF, PMAInstrAccessFaultF; // *** these are just so that the mmu has somewhere to put these outputs since they aren't used in dmem
// *** if you're allowed to parameterize outputs/ inputs existence, these are an easy delete.
mmu #(.ENTRY_BITS(`DTLB_ENTRY_BITS), .IMMU(0)) dmmu(.TLBAccessType(MemRWM), .VirtualAddress(MemAdrM), .Size(Funct3M[1:0]),
.PTEWriteVal(PageTableEntryM), .PageTypeWriteVal(PageTypeM),
.TLBWrite(DTLBWriteM), .TLBFlush(DTLBFlushM),
.PhysicalAddress(MemPAdrM), .TLBMiss(DTLBMissM),
.TLBHit(DTLBHitM), .TLBPageFault(DTLBPageFaultM),
.ExecuteAccessF(1'b0),
.SquashBusAccess(DSquashBusAccessM), .HSELRegions(DHSELRegionsM),
.*); // *** the pma/pmp instruction acess faults don't really matter here. is it possible to parameterize which outputs exist?
// Specify which type of page fault is occurring
assign DTLBLoadPageFaultM = DTLBPageFaultM & MemRWM[1];
assign DTLBStorePageFaultM = DTLBPageFaultM & MemRWM[0];
// Determine if an Unaligned access is taking place
always_comb
case(Funct3M[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = MemAdrM[0]; // lh, sh, lhu
2'b10: DataMisalignedM = MemAdrM[1] | MemAdrM[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |MemAdrM[2:0]; // ld, sd, fld, fsd
endcase
// Squash unaligned data accesses and failed store conditionals
// *** this is also the place to squash if the cache is hit
// Changed DataMisalignedM to a larger combination of trap sources
// NonBusTrapM is anything that the bus doesn't contribute to producing
// By contrast, using TrapM results in circular logic errors
assign MemReadM = MemRWM[1] & ~NonBusTrapM & CurrState != STATE_STALLED;
assign MemWriteM = MemRWM[0] & ~NonBusTrapM && ~SquashSCM & CurrState != STATE_STALLED;
assign AtomicMaskedM = CurrState != STATE_STALLED ? AtomicM : 2'b00 ;
assign MemAccessM = |MemRWM;
// Determine if M stage committed
// Reset whenever unstalled. Set when access successfully occurs
flopr #(1) committedMreg(clk,reset,(CommittedM | CommitM) & StallM,preCommittedM);
assign CommittedM = preCommittedM | CommitM;
// Determine if address is valid
assign LoadMisalignedFaultM = DataMisalignedM & MemRWM[1];
assign LoadAccessFaultM = DataAccessFaultM & MemRWM[1];
assign StoreMisalignedFaultM = DataMisalignedM & MemRWM[0];
assign StoreAccessFaultM = DataAccessFaultM & MemRWM[0];
// Handle atomic load reserved / store conditional
generate
if (`A_SUPPORTED) begin // atomic instructions supported
logic [`PA_BITS-1:2] ReservationPAdrW;
logic ReservationValidM, ReservationValidW;
logic lrM, scM, WriteAdrMatchM;
assign lrM = MemReadM && AtomicM[0];
assign scM = MemRWM[0] && AtomicM[0];
assign WriteAdrMatchM = MemRWM[0] && (MemPAdrM[`PA_BITS-1:2] == ReservationPAdrW) && ReservationValidW;
assign SquashSCM = scM && ~WriteAdrMatchM;
always_comb begin // ReservationValidM (next value of valid reservation)
if (lrM) ReservationValidM = 1; // set valid on load reserve
else if (scM || WriteAdrMatchM) ReservationValidM = 0; // clear valid on store to same address or any sc
else ReservationValidM = ReservationValidW; // otherwise don't change valid
end
flopenrc #(`PA_BITS-2) resadrreg(clk, reset, FlushW, lrM, MemPAdrM[`PA_BITS-1:2], ReservationPAdrW); // could drop clear on this one but not valid
flopenrc #(1) resvldreg(clk, reset, FlushW, lrM, ReservationValidM, ReservationValidW);
flopenrc #(1) squashreg(clk, reset, FlushW, ~StallW, SquashSCM, SquashSCW);
end else begin // Atomic operations not supported
assign SquashSCM = 0;
assign SquashSCW = 0;
end
endgenerate
// Data stall
//assign DataStall = 0;
// Ross Thompson April 22, 2021
// for now we need to handle the issue where the data memory interface repeately
// requests data from memory rather than issuing a single request.
flopr #(2) stateReg(.clk(clk),
.reset(reset),
.d(NextState),
.q(CurrState));
always_comb begin
case (CurrState)
STATE_READY: if (MemRWM[1] & MemRWM[0]) NextState = STATE_FETCH_AMO; // *** should be some misalign check
else if (MemAccessM & ~DataMisalignedM) NextState = STATE_FETCH;
else NextState = STATE_READY;
STATE_FETCH_AMO: if (MemAckW) NextState = STATE_FETCH;
else NextState = STATE_FETCH_AMO;
STATE_FETCH: if (MemAckW & ~StallW) NextState = STATE_READY;
else if (MemAckW & StallW) NextState = STATE_STALLED;
else NextState = STATE_FETCH;
STATE_STALLED: if (~StallW) NextState = STATE_READY;
else NextState = STATE_STALLED;
default: NextState = STATE_READY;
endcase // case (CurrState)
end
endmodule

View File

@ -1,5 +1,5 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// pmaadrdec.sv // adrdec.sv
// //
// Written: David_Harris@hmc.edu 29 January 2021 // Written: David_Harris@hmc.edu 29 January 2021
// Modified: // Modified:
@ -25,7 +25,7 @@
`include "wally-config.vh" `include "wally-config.vh"
module pmaadrdec ( module adrdec (
input logic [31:0] HADDR, input logic [31:0] HADDR,
input logic [31:0] Base, Range, input logic [31:0] Base, Range,
input logic Supported, input logic Supported,

View File

@ -0,0 +1,44 @@
///////////////////////////////////////////
// adrdecs.sv
//
// Written: David_Harris@hmc.edu 22 June 2021
// Modified:
//
// Purpose: All the address decoders for peripherals
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module adrdecs (
input logic [31:0] HADDR, // *** will need to use PAdr in mmu, stick with HADDR in uncore
input logic AccessRW, AccessRX, AccessRWX,
input logic [2:0] HSIZE,
output logic [5:0] HSELRegions
);
// Determine which region of physical memory (if any) is being accessed
// *** eventually uncomment Access signals
adrdec boottimdec(HADDR, `BOOTTIM_BASE, `BOOTTIM_RANGE, `BOOTTIM_SUPPORTED, 1'b1/*AccessRX*/, HSIZE, 4'b1111, HSELRegions[5]);
adrdec timdec(HADDR, `TIM_BASE, `TIM_RANGE, `TIM_SUPPORTED, 1'b1/*AccessRWX*/, HSIZE, 4'b1111, HSELRegions[4]);
adrdec clintdec(HADDR, `CLINT_BASE, `CLINT_RANGE, `CLINT_SUPPORTED, AccessRW, HSIZE, 4'b1111, HSELRegions[3]);
adrdec gpiodec(HADDR, `GPIO_BASE, `GPIO_RANGE, `GPIO_SUPPORTED, AccessRW, HSIZE, 4'b0100, HSELRegions[2]);
adrdec uartdec(HADDR, `UART_BASE, `UART_RANGE, `UART_SUPPORTED, AccessRW, HSIZE, 4'b0001, HSELRegions[1]);
adrdec plicdec(HADDR, `PLIC_BASE, `PLIC_RANGE, `PLIC_SUPPORTED, AccessRW, HSIZE, 4'b0100, HSELRegions[0]);
endmodule

View File

@ -58,13 +58,7 @@ module pmachecker (
assign AccessRX = ReadAccessM | ExecuteAccessF; assign AccessRX = ReadAccessM | ExecuteAccessF;
// Determine which region of physical memory (if any) is being accessed // Determine which region of physical memory (if any) is being accessed
// *** linux tests fail early when Access is anything other than 1b1 adrdecs adrdecs(HADDR, AccessRW, AccessRX, AccessRWX, HSIZE, HSELRegions);
pmaadrdec boottimdec(HADDR, `BOOTTIM_BASE, `BOOTTIM_RANGE, `BOOTTIM_SUPPORTED, 1'b1/*AccessRX*/, HSIZE, 4'b1111, HSELRegions[5]);
pmaadrdec timdec(HADDR, `TIM_BASE, `TIM_RANGE, `TIM_SUPPORTED, 1'b1/*AccessRWX*/, HSIZE, 4'b1111, HSELRegions[4]);
pmaadrdec clintdec(HADDR, `CLINT_BASE, `CLINT_RANGE, `CLINT_SUPPORTED, AccessRW, HSIZE, 4'b1111, HSELRegions[3]);
pmaadrdec gpiodec(HADDR, `GPIO_BASE, `GPIO_RANGE, `GPIO_SUPPORTED, AccessRW, HSIZE, 4'b0100, HSELRegions[2]);
pmaadrdec uartdec(HADDR, `UART_BASE, `UART_RANGE, `UART_SUPPORTED, AccessRW, HSIZE, 4'b0001, HSELRegions[1]);
pmaadrdec plicdec(HADDR, `PLIC_BASE, `PLIC_RANGE, `PLIC_SUPPORTED, AccessRW, HSIZE, 4'b0100, HSELRegions[0]);
// Only RAM memory regions are cacheable // Only RAM memory regions are cacheable
assign Cacheable = HSELRegions[5] | HSELRegions[4]; assign Cacheable = HSELRegions[5] | HSELRegions[4];

View File

@ -47,8 +47,6 @@ module uncore (
input logic [2:0] HADDRD, input logic [2:0] HADDRD,
input logic [3:0] HSIZED, input logic [3:0] HSIZED,
input logic HWRITED, input logic HWRITED,
// PMA checker signals
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM,
// bus interface // bus interface
// PMA checker now handles access faults. *** This can be deleted // PMA checker now handles access faults. *** This can be deleted
// output logic DataAccessFaultM, // output logic DataAccessFaultM,
@ -74,7 +72,9 @@ module uncore (
logic [1:0] MemRWboottim; logic [1:0] MemRWboottim;
logic UARTIntr,GPIOIntr; logic UARTIntr,GPIOIntr;
pmachecker ebuAdrDec(.PhysicalAddress('0),.Size('0),.Cacheable(),.Idempotent(),.AtomicAllowed(),.PMASquashBusAccess(),.PMAInstrAccessFaultF(),.PMALoadAccessFaultM(),.PMAStoreAccessFaultM(),.*); // Determine which region of physical memory (if any) is being accessed
// Use a trimmed down portion of the PMA checker - only the address decoders
adrdecs adrdecs(HADDR, 1'b1, 1'b1, 1'b1, HSIZE, HSELRegions);
// unswizzle HSEL signals // unswizzle HSEL signals
assign {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC} = HSELRegions; assign {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC} = HSELRegions;

View File

@ -52,9 +52,7 @@ module wallypipelinedhart (
// Delayed signals for subword write // Delayed signals for subword write
output logic [2:0] HADDRD, output logic [2:0] HADDRD,
output logic [3:0] HSIZED, output logic [3:0] HSIZED,
output logic HWRITED, output logic HWRITED
// Access signals for PMA decoder
output logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM
); );
// logic [1:0] ForwardAE, ForwardBE; // logic [1:0] ForwardAE, ForwardBE;
@ -117,7 +115,7 @@ module wallypipelinedhart (
logic [1:0] PageTypeF, PageTypeM; logic [1:0] PageTypeF, PageTypeM;
// PMA checker signals // PMA checker signals
//logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM; logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM;
logic PMPInstrAccessFaultF, PMPLoadAccessFaultM, PMPStoreAccessFaultM; logic PMPInstrAccessFaultF, PMPLoadAccessFaultM, PMPStoreAccessFaultM;
logic PMAInstrAccessFaultF, PMALoadAccessFaultM, PMAStoreAccessFaultM; logic PMAInstrAccessFaultF, PMALoadAccessFaultM, PMAStoreAccessFaultM;
logic DSquashBusAccessM, ISquashBusAccessF; logic DSquashBusAccessM, ISquashBusAccessF;

View File

@ -62,7 +62,6 @@ module wallypipelinedsoc (
logic HREADY, HRESP; logic HREADY, HRESP;
logic [5:0] HSELRegions; logic [5:0] HSELRegions;
logic InstrAccessFaultF, DataAccessFaultM; logic InstrAccessFaultF, DataAccessFaultM;
logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM; // to uncore PMA decoder
logic TimerIntM, SwIntM; // from CLINT logic TimerIntM, SwIntM; // from CLINT
logic [63:0] MTIME_CLINT, MTIMECMP_CLINT; // from CLINT to CSRs logic [63:0] MTIME_CLINT, MTIMECMP_CLINT; // from CLINT to CSRs
logic ExtIntM; // from PLIC logic ExtIntM; // from PLIC