renamed dmem to lsu and removed adrdec module from pmpadrdec

This commit is contained in:
David Harris 2021-06-22 23:03:43 -04:00
parent fc851ca795
commit 6be0a3b8df
5 changed files with 6 additions and 428 deletions

View File

@ -1,184 +0,0 @@
///////////////////////////////////////////
// dcache.sv
//
// Written: jaallen@g.hmc.edu 2021-04-15
// Modified:
//
// Purpose: Cache memory for the dmem so it can access memory less often, saving cycles
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module dcache(
// Basic pipeline stuff
input logic clk, reset,
input logic StallW,
input logic FlushW,
// Upper bits of physical address
input logic [`PA_BITS-1:12] UpperPAdrM,
// Lower 12 bits of virtual address, since it's faster this way
input logic [11:0] LowerVAdrM,
// Write to the dcache
input logic [`XLEN-1:0] DCacheWriteDataM,
input logic DCacheReadM, DCacheWriteM,
// Data read in from the ebu unit
input logic [`XLEN-1:0] ReadDataW,
input logic MemAckW,
// Access requested from the ebu unit
output logic [`PA_BITS-1:0] MemPAdrM,
output logic MemReadM, MemWriteM,
// High if the dcache is requesting a stall
output logic DCacheStallW,
// The data that was requested from the cache
output logic [`XLEN-1:0] DCacheReadW
);
// Configuration parameters
// TODO Move these to a config file
localparam integer DCACHELINESIZE = 256;
localparam integer DCACHENUMLINES = 512;
// Input signals to cache memory
logic FlushMem;
logic [`PA_BITS-1:12] DCacheMemUpperPAdr;
logic [11:0] DCacheMemLowerAdr;
logic DCacheMemWriteEnable;
logic [DCACHELINESIZE-1:0] DCacheMemWriteData;
logic [`XLEN-1:0] DCacheMemWritePAdr;
logic EndFetchState;
// Output signals from cache memory
logic [`XLEN-1:0] DCacheMemReadData;
logic DCacheMemReadValid;
wtdirectmappedmem #(.LINESIZE(DCACHELINESIZE), .NUMLINES(DCACHENUMLINES), .WORDSIZE(`XLEN)) cachemem(
.*,
// Stall it if the pipeline is stalled, unless we're stalling it and we're ending our stall
.stall(StallW),
.flush(FlushMem),
.ReadUpperPAdr(DCacheMemUpperPAdr),
.ReadLowerAdr(DCacheMemLowerAdr),
.LoadEnable(DCacheMemWriteEnable),
.LoadLine(DCacheMemWriteData),
.LoadPAdr(DCacheMemWritePAdr),
.DataWord(DCacheMemReadData),
.DataValid(DCacheMemReadValid),
.WriteEnable(0),
.WriteWord(0),
.WritePAdr(0),
.WriteSize(2'b10)
);
dcachecontroller #(.LINESIZE(DCACHELINESIZE)) controller(.*);
// For now, assume no writes to executable memory
assign FlushMem = 1'b0;
endmodule
module dcachecontroller #(parameter LINESIZE = 256) (
// Inputs from pipeline
input logic clk, reset,
input logic StallW,
input logic FlushW,
// Input the address to read
// The upper bits of the physical pc
input logic [`PA_BITS-1:12] DCacheMemUpperPAdr,
// The lower bits of the virtual pc
input logic [11:0] DCacheMemLowerAdr,
// Signals to/from cache memory
// The read coming out of it
input logic [`XLEN-1:0] DCacheMemReadData,
input logic DCacheMemReadValid,
// Load data into the cache
output logic DCacheMemWriteEnable,
output logic [LINESIZE-1:0] DCacheMemWriteData,
output logic [`XLEN-1:0] DCacheMemWritePAdr,
// The read that was requested
output logic [31:0] DCacheReadW,
// Outputs to pipeline control stuff
output logic DCacheStallW, EndFetchState,
// Signals to/from ahblite interface
// A read containing the requested data
input logic [`XLEN-1:0] ReadDataW,
input logic MemAckW,
// The read we request from main memory
output logic [`PA_BITS-1:0] MemPAdrM,
output logic MemReadM, MemWriteM
);
// Cache fault signals
logic FaultStall;
// Handle happy path (data in cache)
always_comb begin
DCacheReadW = DCacheMemReadData;
end
// Handle cache faults
localparam integer WORDSPERLINE = LINESIZE/`XLEN;
localparam integer LOGWPL = $clog2(WORDSPERLINE);
localparam integer OFFSETWIDTH = $clog2(LINESIZE/8);
logic FetchState, BeginFetchState;
logic [LOGWPL:0] FetchWordNum, NextFetchWordNum;
logic [`PA_BITS-1:0] LineAlignedPCPF;
flopr #(1) FetchStateFlop(clk, reset, BeginFetchState | (FetchState & ~EndFetchState), FetchState);
flopr #(LOGWPL+1) FetchWordNumFlop(clk, reset, NextFetchWordNum, FetchWordNum);
genvar i;
generate
for (i=0; i < WORDSPERLINE; i++) begin
flopenr #(`XLEN) flop(clk, reset, FetchState & (i == FetchWordNum), ReadDataW, DCacheMemWriteData[(i+1)*`XLEN-1:i*`XLEN]);
end
endgenerate
// Enter the fetch state when we hit a cache fault
always_comb begin
BeginFetchState = ~DCacheMemReadValid & ~FetchState & (FetchWordNum == 0);
end
// Exit the fetch state once the cache line has been loaded
flopr #(1) EndFetchStateFlop(clk, reset, DCacheMemWriteEnable, EndFetchState);
// Machinery to request the correct addresses from main memory
always_comb begin
MemReadM = FetchState & ~EndFetchState & ~DCacheMemWriteEnable;
LineAlignedPCPF = {DCacheMemUpperPAdr, DCacheMemLowerAdr[11:OFFSETWIDTH], {OFFSETWIDTH{1'b0}}};
MemPAdrM = LineAlignedPCPF + FetchWordNum*(`XLEN/8);
NextFetchWordNum = FetchState ? FetchWordNum+MemAckW : {LOGWPL+1{1'b0}};
end
// Write to cache memory when we have the line here
always_comb begin
DCacheMemWritePAdr = LineAlignedPCPF;
DCacheMemWriteEnable = FetchWordNum == {1'b1, {LOGWPL{1'b0}}} & FetchState & ~EndFetchState;
end
// Stall the pipeline while loading a new line from memory
always_comb begin
DCacheStallW = FetchState | ~DCacheMemReadValid;
end
endmodule

View File

@ -1,197 +0,0 @@
///////////////////////////////////////////
// dmem.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Data memory
// Top level of the memory-stage hart logic
// Contains data cache, DTLB, subword read/write datapath, interface to external bus
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
// *** Ross Thompson amo misalignment check?
module dmem (
input logic clk, reset,
input logic StallM, FlushM, StallW, FlushW,
//output logic DataStall,
// Memory Stage
input logic [1:0] MemRWM,
input logic [`XLEN-1:0] MemAdrM,
input logic [2:0] Funct3M,
//input logic [`XLEN-1:0] ReadDataW,
input logic [`XLEN-1:0] WriteDataM,
input logic [1:0] AtomicM,
input logic CommitM,
output logic [`PA_BITS-1:0] MemPAdrM,
output logic MemReadM, MemWriteM,
output logic [1:0] AtomicMaskedM,
output logic DataMisalignedM,
output logic CommittedM,
// Writeback Stage
input logic MemAckW,
input logic [`XLEN-1:0] ReadDataW,
output logic SquashSCW,
// faults
input logic NonBusTrapM,
input logic DataAccessFaultM,
output logic DTLBLoadPageFaultM, DTLBStorePageFaultM,
output logic LoadMisalignedFaultM, LoadAccessFaultM,
output logic StoreMisalignedFaultM, StoreAccessFaultM,
// mmu management
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] PageTableEntryM,
input logic [1:0] PageTypeM,
input logic [`XLEN-1:0] SATP_REGW,
input logic STATUS_MXR, STATUS_SUM,
input logic DTLBWriteM, DTLBFlushM,
output logic DTLBMissM, DTLBHitM,
// PMA/PMP (inside mmu) signals
input logic [31:0] HADDR, // *** replace all of these H inputs with physical adress once pma checkers have been edited to use paddr as well.
input logic [2:0] HSIZE, HBURST,
input logic HWRITE,
input logic AtomicAccessM, WriteAccessM, ReadAccessM, // execute access is hardwired to zero in this mmu because we're only working with data in the M stage.
input logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW, // *** all of these come from the privileged unit, so thwyre gonna have to come over into ifu and dmem
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0], // *** this one especially has a large note attached to it in pmpchecker.
output logic PMALoadAccessFaultM, PMAStoreAccessFaultM,
output logic PMPLoadAccessFaultM, PMPStoreAccessFaultM, // *** can these be parameterized? we dont need the m stage ones for the immu and vice versa.
output logic DSquashBusAccessM,
output logic [5:0] DHSELRegionsM
);
logic SquashSCM;
logic DTLBPageFaultM;
logic MemAccessM;
logic [1:0] CurrState, NextState;
logic preCommittedM;
localparam STATE_READY = 0;
localparam STATE_FETCH = 1;
localparam STATE_FETCH_AMO = 2;
localparam STATE_STALLED = 3;
logic PMPInstrAccessFaultF, PMAInstrAccessFaultF; // *** these are just so that the mmu has somewhere to put these outputs since they aren't used in dmem
// *** if you're allowed to parameterize outputs/ inputs existence, these are an easy delete.
mmu #(.ENTRY_BITS(`DTLB_ENTRY_BITS), .IMMU(0)) dmmu(.TLBAccessType(MemRWM), .VirtualAddress(MemAdrM), .Size(Funct3M[1:0]),
.PTEWriteVal(PageTableEntryM), .PageTypeWriteVal(PageTypeM),
.TLBWrite(DTLBWriteM), .TLBFlush(DTLBFlushM),
.PhysicalAddress(MemPAdrM), .TLBMiss(DTLBMissM),
.TLBHit(DTLBHitM), .TLBPageFault(DTLBPageFaultM),
.ExecuteAccessF(1'b0),
.SquashBusAccess(DSquashBusAccessM), .HSELRegions(DHSELRegionsM),
.*); // *** the pma/pmp instruction acess faults don't really matter here. is it possible to parameterize which outputs exist?
// Specify which type of page fault is occurring
assign DTLBLoadPageFaultM = DTLBPageFaultM & MemRWM[1];
assign DTLBStorePageFaultM = DTLBPageFaultM & MemRWM[0];
// Determine if an Unaligned access is taking place
always_comb
case(Funct3M[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = MemAdrM[0]; // lh, sh, lhu
2'b10: DataMisalignedM = MemAdrM[1] | MemAdrM[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |MemAdrM[2:0]; // ld, sd, fld, fsd
endcase
// Squash unaligned data accesses and failed store conditionals
// *** this is also the place to squash if the cache is hit
// Changed DataMisalignedM to a larger combination of trap sources
// NonBusTrapM is anything that the bus doesn't contribute to producing
// By contrast, using TrapM results in circular logic errors
assign MemReadM = MemRWM[1] & ~NonBusTrapM & CurrState != STATE_STALLED;
assign MemWriteM = MemRWM[0] & ~NonBusTrapM && ~SquashSCM & CurrState != STATE_STALLED;
assign AtomicMaskedM = CurrState != STATE_STALLED ? AtomicM : 2'b00 ;
assign MemAccessM = |MemRWM;
// Determine if M stage committed
// Reset whenever unstalled. Set when access successfully occurs
flopr #(1) committedMreg(clk,reset,(CommittedM | CommitM) & StallM,preCommittedM);
assign CommittedM = preCommittedM | CommitM;
// Determine if address is valid
assign LoadMisalignedFaultM = DataMisalignedM & MemRWM[1];
assign LoadAccessFaultM = DataAccessFaultM & MemRWM[1];
assign StoreMisalignedFaultM = DataMisalignedM & MemRWM[0];
assign StoreAccessFaultM = DataAccessFaultM & MemRWM[0];
// Handle atomic load reserved / store conditional
generate
if (`A_SUPPORTED) begin // atomic instructions supported
logic [`PA_BITS-1:2] ReservationPAdrW;
logic ReservationValidM, ReservationValidW;
logic lrM, scM, WriteAdrMatchM;
assign lrM = MemReadM && AtomicM[0];
assign scM = MemRWM[0] && AtomicM[0];
assign WriteAdrMatchM = MemRWM[0] && (MemPAdrM[`PA_BITS-1:2] == ReservationPAdrW) && ReservationValidW;
assign SquashSCM = scM && ~WriteAdrMatchM;
always_comb begin // ReservationValidM (next value of valid reservation)
if (lrM) ReservationValidM = 1; // set valid on load reserve
else if (scM || WriteAdrMatchM) ReservationValidM = 0; // clear valid on store to same address or any sc
else ReservationValidM = ReservationValidW; // otherwise don't change valid
end
flopenrc #(`PA_BITS-2) resadrreg(clk, reset, FlushW, lrM, MemPAdrM[`PA_BITS-1:2], ReservationPAdrW); // could drop clear on this one but not valid
flopenrc #(1) resvldreg(clk, reset, FlushW, lrM, ReservationValidM, ReservationValidW);
flopenrc #(1) squashreg(clk, reset, FlushW, ~StallW, SquashSCM, SquashSCW);
end else begin // Atomic operations not supported
assign SquashSCM = 0;
assign SquashSCW = 0;
end
endgenerate
// Data stall
//assign DataStall = 0;
// Ross Thompson April 22, 2021
// for now we need to handle the issue where the data memory interface repeately
// requests data from memory rather than issuing a single request.
flopr #(2) stateReg(.clk(clk),
.reset(reset),
.d(NextState),
.q(CurrState));
always_comb begin
case (CurrState)
STATE_READY: if (MemRWM[1] & MemRWM[0]) NextState = STATE_FETCH_AMO; // *** should be some misalign check
else if (MemAccessM & ~DataMisalignedM) NextState = STATE_FETCH;
else NextState = STATE_READY;
STATE_FETCH_AMO: if (MemAckW) NextState = STATE_FETCH;
else NextState = STATE_FETCH_AMO;
STATE_FETCH: if (MemAckW & ~StallW) NextState = STATE_READY;
else if (MemAckW & StallW) NextState = STATE_STALLED;
else NextState = STATE_FETCH;
STATE_STALLED: if (~StallW) NextState = STATE_READY;
else NextState = STATE_STALLED;
default: NextState = STATE_READY;
endcase // case (CurrState)
end
endmodule

View File

@ -1,44 +0,0 @@
///////////////////////////////////////////
// adrdec.sv
//
// Written: David_Harris@hmc.edu 29 January 2021
// Modified:
//
// Purpose: Address decoder
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module adrdec (
input logic [31:0] HADDR,
input logic [31:0] Base, Range,
output logic HSEL
);
logic [31:0] match;
// determine if an address is in a range starting at the base
// for example, if Base = 0x04002000 and range = 0x00000FFF,
// then anything address between 0x04002000 and 0x04002FFF should match (HSEL=1)
assign match = (HADDR ~^ Base) | Range;
assign HSEL = &match;
endmodule

View File

@ -65,7 +65,9 @@ module pmpadrdec (
assign TORMatch = AdrAtLeastPreviousPMP && AdrBelowCurrentPMP;
// Naturally aligned four-byte region
adrdec na4dec(HADDR, CurrentAdrFull, (2**2)-1, NA4Match);
// *** need to switch to Physical Address and extend to proper number of bits
assign NA4Match = &(HADDR[31:2] ~^ CurrentAdrFull[31:2]); // check if address matches all but bottom 2 bits;
//adrdec na4dec(HADDR, CurrentAdrFull, (2**2)-1, NA4Match);
generate
if (`XLEN == 32 || `XLEN == 64) begin
@ -116,7 +118,8 @@ module pmpadrdec (
// *** Range should not be truncated... but our physical address space is
// currently only 32 bits wide.
adrdec napotdec(HADDR, CurrentAdrFull, Range[31:0], NAPOTMatch);
// with a bit of combining of range selection, this could be shared with NA4Match ***
assign NAPOTMatch = &((HADDR ~^ CurrentAdrFull) | Range[31:0]);
assign Match = (AdrMode == TOR) ? TORMatch :
(AdrMode == NA4) ? NA4Match :

View File

@ -163,7 +163,7 @@ module wallypipelinedhart (
mux2 #(`XLEN) OutputInput2mux(WriteDataM, FWriteDataM, FMemRWM[0], WriteDatatmpM);
dmem dmem(.MemRWM(MemRWM|FMemRWM), .WriteDataM(WriteDatatmpM),.*); // data cache unit
lsu lsu(.MemRWM(MemRWM|FMemRWM), .WriteDataM(WriteDatatmpM),.*); // data cache unit
ahblite ebu(
//.InstrReadF(1'b0),