Merge pull request #28 from ross144/main

Consolidated SRAMs and removed unused versions
This commit is contained in:
Mike Thompson 2023-01-25 23:58:03 +01:00 committed by GitHub
commit b7ed53e030
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 62 additions and 540 deletions

View File

@ -1,86 +0,0 @@
///////////////////////////////////////////
// ram2p1r1wb
//
// Written: Ross Thomposn
// Email: ross1728@gmail.com
// Created: February 14, 2021
// Modified:
//
// Purpose: Behavioral model of two port SRAM. While this is synthesizable it will produce a flip flop based memory which
// behaves with the timing of an SRAM typical of GF 14nm, 32nm, and 45nm.
//
//
// to preload this memory we can use the following command
// in modelsim's do file.
// mem load -infile <relative path to the text file > -format <bin|hex> <hierarchy to the memory.>
// example
// mem load -infile twoBitPredictor.txt -format bin testbench/dut/core/ifu/bpred/DirPredictor/memory/memory
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module ram2p1r1wb #(parameter DEPTH = 10, WIDTH = 2) (
input logic clk,
input logic reset,
// port 1 is read only
input logic [DEPTH-1:0] ra1,
output logic [WIDTH-1:0] rd1,
input logic ren1,
// port 2 is write only
input logic [DEPTH-1:0] wa2,
input logic [WIDTH-1:0] wd2,
input logic wen2,
input logic [WIDTH-1:0] bwe2
);
logic [DEPTH-1:0] ra1q, wa2q;
logic wen2q;
logic [WIDTH-1:0] wd2q;
logic [WIDTH-1:0] mem[2**DEPTH-1:0];
logic [WIDTH-1:0] bwe;
// SRAMs address busses are always registered first
// *** likely issued DH and RT 12/20/22
// wrong enable for write port registers
// prefer to code read like ram1p1rw
// prefer not to have two-cycle write latency
// will require branch predictor changes
flopenr #(DEPTH) ra1Reg(clk, reset, ren1, ra1, ra1q);
flopenr #(DEPTH) wa2Reg(clk, reset, ren1, wa2, wa2q);
flopr #(1) wen2Reg(clk, reset, wen2, wen2q);
flopenr #(WIDTH) wd2Reg(clk, reset, ren1, wd2, wd2q);
// read port
assign rd1 = mem[ra1q];
// write port
assign bwe = {WIDTH{wen2q}} & bwe2;
always_ff @(posedge clk)
mem[wa2q] <= wd2q & bwe | mem[wa2q] & ~bwe;
endmodule

View File

@ -1,8 +1,8 @@
///////////////////////////////////////////
// 1 port sram.
// 2 port sram.
//
// Written: ross1728@gmail.com May 3, 2021
// Basic sram with 1 read write port.
// Two port SRAM 1 read port and 1 write port.
// When clk rises Addr and LineWriteData are sampled.
// Following the clk edge read data is output from the sampled Addr.
// Write
@ -31,7 +31,7 @@
`include "wally-config.vh"
module ram2p1r1wbefix #(parameter DEPTH=128, WIDTH=256) (
module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
input logic clk,
input logic ce1, ce2,
input logic [$clog2(DEPTH)-1:0] ra1,
@ -59,13 +59,13 @@ module ram2p1r1wbefix #(parameter DEPTH=128, WIDTH=256) (
// Write divided into part for bytes and part for extra msbs
if(WIDTH >= 8)
always_ff @(posedge clk)
always @(posedge clk)
if (ce2 & we2)
for(i = 0; i < WIDTH/8; i++)
if(bwe2[i]) mem[wa2][i*8 +: 8] <= #1 wd2[i*8 +: 8];
if (WIDTH%8 != 0) // handle msbs if width not a multiple of 8
always_ff @(posedge clk)
always @(posedge clk)
if (ce2 & we2 & bwe2[WIDTH/8])
mem[wa2][WIDTH-1:WIDTH-WIDTH%8] <= #1 wd2[WIDTH-1:WIDTH-WIDTH%8];

View File

@ -135,20 +135,19 @@ module bpred (
// Part 2 Branch target address prediction
// *** For now the BTB will house the direct and indirect targets
// *** getting to many false positivies from the BTB, we need a partial TAG to reduce this.
BTBPredictor TargetPredictor(.clk(clk),
btb TargetPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.TargetPC(BTBPredPCF),
.PCNextF,
.BTBPredPCF,
.InstrClass(PredInstrClassF),
.Valid(BTBValidF),
// update
.UpdateEN((|InstrClassE | (PredictionInstrClassWrongE)) & ~StallE),
.UpdatePC(PCE),
.UpdateTarget(IEUAdrE),
.PCE,
.IEUAdrE,
.UpdateInvalid(PredictionInstrClassWrongE),
.UpdateInstrClass(InstrClassE));
.InstrClassE);
// Part 3 RAS
// *** need to add the logic to restore RAS on flushes. We will use incr for this.

View File

@ -1,13 +1,14 @@
///////////////////////////////////////////
// ram2p1r1wb
// btb.sv
//
// Written: Ross Thomposn
// Email: ross1728@gmail.com
// Written: Ross Thomposn ross1728@gmail.com
// Created: February 15, 2021
// Modified:
// Modified: 24 January 2023
//
// Purpose: BTB model. Outputs type of instruction (currently 1 hot encoded. Probably want
// to encode to reduce storage), valid, target PC.
// Purpose: Branch Target Buffer (BTB). The BTB predicts the target address of all control flow instructions.
// It also guesses the type of instrution; jalr(r), return, jump (jr), or branch.
//
// Documentation: RISC-V System on Chip Design Chapter 10 (Figure ***)
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
@ -29,43 +30,45 @@
`include "wally-config.vh"
module BTBPredictor
module btb
#(parameter int Depth = 10
)
(input logic clk,
input logic reset,
input logic StallF, StallE,
input logic [`XLEN-1:0] LookUpPC,
output logic [`XLEN-1:0] TargetPC,
input logic reset,
input logic StallF, StallE,
input logic [`XLEN-1:0] PCNextF,
output logic [`XLEN-1:0] BTBPredPCF,
output logic [3:0] InstrClass,
output logic Valid,
// update
input logic UpdateEN,
input logic [`XLEN-1:0] UpdatePC,
input logic [`XLEN-1:0] UpdateTarget,
input logic [3:0] UpdateInstrClass,
input logic UpdateInvalid
input logic UpdateEN,
input logic [`XLEN-1:0] PCE,
input logic [`XLEN-1:0] IEUAdrE,
input logic [3:0] InstrClassE,
input logic UpdateInvalid
);
localparam TotalDepth = 2 ** Depth;
logic [TotalDepth-1:0] ValidBits;
logic [Depth-1:0] LookUpPCIndex, UpdatePCIndex, LookUpPCIndexQ, UpdatePCIndexQ;
logic [Depth-1:0] PCNextFIndex, PCEIndex, PCNextFIndexQ, PCEIndexQ;
logic UpdateENQ;
logic [`XLEN-1:0] ResetPC;
// hashing function for indexing the PC
// We have Depth bits to index, but XLEN bits as the input.
// bit 0 is always 0, bit 1 is 0 if using 4 byte instructions, but is not always 0 if
// using compressed instructions. XOR bit 1 with the MSB of index.
assign UpdatePCIndex = {UpdatePC[Depth+1] ^ UpdatePC[1], UpdatePC[Depth:2]};
assign LookUpPCIndex = {LookUpPC[Depth+1] ^ LookUpPC[1], LookUpPC[Depth:2]};
assign PCEIndex = {PCE[Depth+1] ^ PCE[1], PCE[Depth:2]};
assign ResetPC = `RESET_VECTOR;
assign PCNextFIndex = reset ? ResetPC[Depth+1:2] : {PCNextF[Depth+1] ^ PCNextF[1], PCNextF[Depth:2]};
//assign PCNextFIndex = {PCNextF[Depth+1] ^ PCNextF[1], PCNextF[Depth:2]};
flopenr #(Depth) UpdatePCIndexReg(.clk(clk),
flopenr #(Depth) PCEIndexReg(.clk(clk),
.reset(reset),
.en(~StallE),
.d(UpdatePCIndex),
.q(UpdatePCIndexQ));
.d(PCEIndex),
.q(PCEIndexQ));
// The valid bit must be resetable.
always_ff @ (posedge clk) begin
@ -73,10 +76,10 @@ module BTBPredictor
ValidBits <= #1 {TotalDepth{1'b0}};
end else
if (UpdateENQ) begin
ValidBits[UpdatePCIndexQ] <= #1 ~ UpdateInvalid;
ValidBits[PCEIndexQ] <= #1 ~ UpdateInvalid;
end
end
assign Valid = ValidBits[LookUpPCIndexQ];
assign Valid = ValidBits[PCNextFIndexQ];
flopenr #(1) UpdateENReg(.clk(clk),
@ -89,8 +92,8 @@ module BTBPredictor
flopenr #(Depth) LookupPCIndexReg(.clk(clk),
.reset(reset),
.en(~StallF),
.d(LookUpPCIndex),
.q(LookUpPCIndexQ));
.d(PCNextFIndex),
.q(PCNextFIndexQ));
@ -99,16 +102,9 @@ module BTBPredictor
// *** need to add forwarding.
// *** optimize for byte write enables
// *** switch to ram2p1r1wbefix
ram2p1r1wb #(Depth, `XLEN+4) memory(.clk(clk),
.reset(reset),
.ra1(LookUpPCIndex),
.rd1({{InstrClass, TargetPC}}),
.ren1(~StallF),
.wa2(UpdatePCIndex),
.wd2({UpdateInstrClass, UpdateTarget}),
.wen2(UpdateEN),
.bwe2({4'hF, {`XLEN{1'b1}}})); // *** definitely not right.
ram2p1r1wbe #(2**Depth, `XLEN+4) memory(
.clk, .ce1(~StallF | reset), .ra1(PCNextFIndex), .rd1({InstrClass, BTBPredPCF}),
.ce2(~StallE), .wa2(PCEIndex), .wd2({InstrClassE, IEUAdrE}), .we2(UpdateEN), .bwe2('1));
endmodule

View File

@ -77,7 +77,7 @@ module foldedgshare
assign FinalIndexNextF = IndexNextF[depth-1:0] ^ {{delta{1'b0}} , IndexNextF[k-1:depth]};
assign FinalIndexW = IndexW[depth-1:0] ^ {{delta{1'b0}} , IndexW[k-1:depth]};
ram2p1r1wbefix #(2**depth, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**depth, 2) PHT(.clk(clk),
.ce1(~StallF | reset), .ce2(~StallW & ~FlushW),
.ra1(FinalIndexNextF),
.rd1(TableDirPredictionF),

View File

@ -51,7 +51,7 @@ module globalhistory
logic PCSrcM;
ram2p1r1wbefix #(2**k, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF), .ce2(~StallM & ~FlushM),
.ra1(GHR),
.rd1(DirPredictionF),

View File

@ -54,7 +54,7 @@ module gshare
assign IndexNextF = GHR & {PCNextF[k+1] ^ PCNextF[1], PCNextF[k:2]};
assign IndexM = GHRM & {PCM[k+1] ^ PCM[1], PCM[k:2]};
ram2p1r1wbefix #(2**k, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF), .ce2(~StallM & ~FlushM),
.ra1(IndexNextF),
.rd1(DirPredictionF),

View File

@ -12,22 +12,18 @@
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
@ -153,7 +149,7 @@ module optgshare
assign IndexM = GHRM[k-1:0] ^ {PCM[k+1] ^ PCM[1], PCM[k:2]};
assign IndexW = GHRW[k-1:0] ^ {PCW[k+1] ^ PCW[1], PCW[k:2]};
ram2p1r1wbefix #(2**k, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF | reset), .ce2(~StallW & ~FlushW),
.ra1(IndexNextF),
.rd1(TableDirPredictionF),

View File

@ -60,7 +60,7 @@ module speculativeglobalhistory
logic [1:0] ForwardNewDirPrediction, ForwardDirPredictionF;
ram2p1r1wbefix #(2**k, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF | reset), .ce2(~StallW & ~FlushW),
.ra1(GHRNextF),
.rd1(TableDirPredictionF),

View File

@ -70,7 +70,7 @@ module speculativegshare
assign IndexE = GHRE[k-1:0] ^ {PCE[k+1] ^ PCE[1], PCE[k:2]};
assign IndexM = GHRM[k-1:0] ^ {PCM[k+1] ^ PCM[1], PCM[k:2]};
ram2p1r1wbefix #(2**k, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF | reset), .ce2(~StallW & ~FlushW),
.ra1(IndexNextF),
.rd1(TableDirPredictionF),

View File

@ -56,7 +56,7 @@ module twoBitPredictor
assign IndexM = {PCM[k+1] ^ PCM[1], PCM[k:2]};
ram2p1r1wbefix #(2**k, 2) PHT(.clk(clk),
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF), .ce2(~StallM & ~FlushM),
.ra1(IndexNextF),
.rd1(DirPredictionF),

View File

@ -1,123 +0,0 @@
///////////////////////////////////////////
// globalHistoryPredictor.sv
//
// Written: Shreya Sanghai
// Email: ssanghai@hmc.edu
// Created: March 16, 2021
// Modified:
//
// Purpose: Global History Branch predictor with parameterized global history register
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module globalHistoryPredictor
#(parameter int k = 10
)
(input logic clk,
input logic reset,
input logic StallF, StallE,
input logic [`XLEN-1:0] PCNextF,
output logic [1:0] BPPredF,
// update
input logic [4:0] InstrClassE,
input logic [4:0] BPInstrClassE,
input logic [4:0] BPInstrClassD,
input logic [4:0] BPInstrClassF,
input logic BPPredDirWrongE,
input logic [`XLEN-1:0] PCE,
input logic PCSrcE,
input logic [1:0] UpdateBPPredE
);
logic [k+1:0] GHR, GHRNext;
logic [k-1:0] PHTUpdateAdr, PHTUpdateAdr0, PHTUpdateAdr1;
logic PHTUpdateEN;
logic BPClassWrongNonCFI;
logic BPClassWrongCFI;
logic BPClassRightNonCFI;
logic BPClassRightBPWrong;
logic BPClassRightBPRight;
logic [6:0] GHRMuxSel;
logic GHRUpdateEN;
logic [k-1:0] GHRLookup;
assign BPClassRightNonCFI = ~BPInstrClassE[0] & ~InstrClassE[0];
assign BPClassWrongCFI = ~BPInstrClassE[0] & InstrClassE[0];
assign BPClassWrongNonCFI = BPInstrClassE[0] & ~InstrClassE[0];
assign BPClassRightBPWrong = BPInstrClassE[0] & InstrClassE[0] & BPPredDirWrongE;
assign BPClassRightBPRight = BPInstrClassE[0] & InstrClassE[0] & ~BPPredDirWrongE;
// GHR update selection, 1 hot encoded.
assign GHRMuxSel[0] = ~BPInstrClassF[0] & (BPClassRightNonCFI | BPClassRightBPRight);
assign GHRMuxSel[1] = BPClassWrongCFI & ~BPInstrClassD[0];
assign GHRMuxSel[2] = BPClassWrongNonCFI & ~BPInstrClassD[0];
assign GHRMuxSel[3] = (BPClassRightBPWrong & ~BPInstrClassD[0]) | (BPClassWrongCFI & BPInstrClassD[0]);
assign GHRMuxSel[4] = BPClassWrongNonCFI & BPInstrClassD[0];
assign GHRMuxSel[5] = InstrClassE[0] & BPClassRightBPWrong & BPInstrClassD[0];
assign GHRMuxSel[6] = BPInstrClassF[0] & (BPClassRightNonCFI | (InstrClassE[0] & BPClassRightBPRight));
assign GHRUpdateEN = (| GHRMuxSel[5:1] & ~StallE) | GHRMuxSel[6] & ~StallF;
// hoping this created a AND-OR mux.
always_comb begin
case (GHRMuxSel)
7'b000_0001: GHRNext = GHR[k-1+2:0]; // no change
7'b000_0010: GHRNext = {GHR[k-2+2:0], PCSrcE}; // branch update
7'b000_0100: GHRNext = {1'b0, GHR[k+1:1]}; // repair 1
7'b000_1000: GHRNext = {GHR[k-1+2:1], PCSrcE}; // branch update with mis prediction correction
7'b001_0000: GHRNext = {2'b00, GHR[k+1:2]}; // repair 2
7'b010_0000: GHRNext = {1'b0, GHR[k+1:2], PCSrcE}; // branch update + repair 1
7'b100_0000: GHRNext = {GHR[k-2+2:0], BPPredF[1]}; // speculative update
default: GHRNext = GHR[k-1+2:0];
endcase
end
flopenr #(k+2) GlobalHistoryRegister(.clk(clk),
.reset(reset),
.en((GHRUpdateEN)),
.d(GHRNext),
.q(GHR));
// if actively updating the GHR at the time of prediction we want to us
// GHRNext as the lookup rather than GHR.
assign PHTUpdateAdr0 = InstrClassE[0] ? GHR[k:1] : GHR[k-1:0];
assign PHTUpdateAdr1 = InstrClassE[0] ? GHR[k+1:2] : GHR[k:1];
assign PHTUpdateAdr = BPInstrClassD[0] ? PHTUpdateAdr1 : PHTUpdateAdr0;
assign PHTUpdateEN = InstrClassE[0] & ~StallE;
assign GHRLookup = |GHRMuxSel[6:1] ? GHRNext[k-1:0] : GHR[k-1:0];
// Make Prediction by reading the correct address in the PHT and also update the new address in the PHT
ram2p1r1wb #(k, 2) PHT(.clk(clk),
.reset(reset),
//.RA1(GHR[k-1:0]),
.ra1(GHRLookup),
.rd1(BPPredF),
.ren1(~StallF),
.wa2(PHTUpdateAdr),
.wd2(UpdateBPPredE),
.wen2(PHTUpdateEN),
.bwe2(2'b11));
endmodule

View File

@ -1,130 +0,0 @@
///////////////////////////////////////////
// globalHistoryPredictor.sv
//
// Written: Shreya Sanghai
// Email: ssanghai@hmc.edu
// Created: March 16, 2021
// Modified:
//
// Purpose: Gshare predictor with parameterized global history register
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module oldgsharepredictor
(input logic clk,
input logic reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushD, FlushE, FlushM, FlushW,
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM,
output logic [1:0] DirPredictionF,
// update
input logic [4:0] InstrClassE,
input logic [4:0] BPInstrClassE,
input logic [4:0] BPInstrClassD,
input logic [4:0] BPInstrClassF,
output logic DirPredictionWrongE,
input logic PCSrcE
);
logic [`BPRED_SIZE+1:0] GHR, GHRNext;
logic [`BPRED_SIZE-1:0] PHTUpdateAdr, PHTUpdateAdr0, PHTUpdateAdr1;
logic PHTUpdateEN;
logic BPClassWrongNonCFI;
logic BPClassWrongCFI;
logic BPClassRightNonCFI;
logic BPClassRightBPWrong;
logic BPClassRightBPRight;
logic [1:0] DirPredictionD, DirPredictionE;
logic [1:0] NewDirPredictionE;
logic [6:0] GHRMuxSel;
logic GHRUpdateEN;
logic [`BPRED_SIZE-1:0] GHRLookup;
assign BPClassRightNonCFI = ~BPInstrClassE[0] & ~InstrClassE[0];
assign BPClassWrongCFI = ~BPInstrClassE[0] & InstrClassE[0];
assign BPClassWrongNonCFI = BPInstrClassE[0] & ~InstrClassE[0];
assign BPClassRightBPWrong = BPInstrClassE[0] & InstrClassE[0] & DirPredictionWrongE;
assign BPClassRightBPRight = BPInstrClassE[0] & InstrClassE[0] & ~DirPredictionWrongE;
// GHR update selection, 1 hot encoded.
assign GHRMuxSel[0] = ~BPInstrClassF[0] & (BPClassRightNonCFI | BPClassRightBPRight);
assign GHRMuxSel[1] = BPClassWrongCFI & ~BPInstrClassD[0];
assign GHRMuxSel[2] = BPClassWrongNonCFI & ~BPInstrClassD[0];
assign GHRMuxSel[3] = (BPClassRightBPWrong & ~BPInstrClassD[0]) | (BPClassWrongCFI & BPInstrClassD[0]);
assign GHRMuxSel[4] = BPClassWrongNonCFI & BPInstrClassD[0];
assign GHRMuxSel[5] = InstrClassE[0] & BPClassRightBPWrong & BPInstrClassD[0];
assign GHRMuxSel[6] = BPInstrClassF[0] & (BPClassRightNonCFI | (InstrClassE[0] & BPClassRightBPRight));
assign GHRUpdateEN = (| GHRMuxSel[5:1] & ~StallE) | GHRMuxSel[6] & ~StallF;
// hoping this created a AND-OR mux.
always_comb begin
case (GHRMuxSel)
7'b000_0001: GHRNext = GHR[`BPRED_SIZE-1+2:0]; // no change
7'b000_0010: GHRNext = {GHR[`BPRED_SIZE-2+2:0], PCSrcE}; // branch update
7'b000_0100: GHRNext = {1'b0, GHR[`BPRED_SIZE+1:1]}; // repair 1
7'b000_1000: GHRNext = {GHR[`BPRED_SIZE-1+2:1], PCSrcE}; // branch update with mis prediction correction
7'b001_0000: GHRNext = {2'b00, GHR[`BPRED_SIZE+1:2]}; // repair 2
7'b010_0000: GHRNext = {1'b0, GHR[`BPRED_SIZE+1:2], PCSrcE}; // branch update + repair 1
7'b100_0000: GHRNext = {GHR[`BPRED_SIZE-2+2:0], DirPredictionF[1]}; // speculative update
default: GHRNext = GHR[`BPRED_SIZE-1+2:0];
endcase
end
flopenr #(`BPRED_SIZE+2) GlobalHistoryRegister(.clk(clk),
.reset(reset),
.en((GHRUpdateEN)),
.d(GHRNext),
.q(GHR));
// if actively updating the GHR at the time of prediction we want to us
// GHRNext as the lookup rather than GHR.
assign PHTUpdateAdr0 = InstrClassE[0] ? GHR[`BPRED_SIZE:1] : GHR[`BPRED_SIZE-1:0];
assign PHTUpdateAdr1 = InstrClassE[0] ? GHR[`BPRED_SIZE+1:2] : GHR[`BPRED_SIZE:1];
assign PHTUpdateAdr = BPInstrClassD[0] ? PHTUpdateAdr1 : PHTUpdateAdr0;
assign PHTUpdateEN = InstrClassE[0] & ~StallE;
assign GHRLookup = |GHRMuxSel[6:1] ? GHRNext[`BPRED_SIZE-1:0] : GHR[`BPRED_SIZE-1:0];
// Make Prediction by reading the correct address in the PHT and also update the new address in the PHT
ram2p1r1wb #(`BPRED_SIZE, 2) PHT(.clk(clk),
.reset(reset),
//.RA1(GHR[`BPRED_SIZE-1:0]),
.ra1(GHRLookup ^ PCNextF[`BPRED_SIZE:1]),
.rd1(DirPredictionF),
.ren1(~StallF),
.wa2(PHTUpdateAdr ^ PCE[`BPRED_SIZE:1]),
.wd2(NewDirPredictionE),
.wen2(PHTUpdateEN),
.bwe2(2'b11));
// DirPrediction pipeline
flopenr #(2) PredictionRegD(clk, reset, ~StallD, DirPredictionF, DirPredictionD);
flopenr #(2) PredictionRegE(clk, reset, ~StallE, DirPredictionD, DirPredictionE);
// New prediction pipeline
satCounter2 BPDirUpdateE(.BrDir(PCSrcE), .OldState(DirPredictionE), .NewState(NewDirPredictionE));
assign DirPredictionWrongE = PCSrcE != DirPredictionE[1] & InstrClassE[0];
endmodule // gsharePredictor

View File

@ -1,130 +0,0 @@
///////////////////////////////////////////
// globalHistoryPredictor.sv
//
// Written: Shreya Sanghai
// Email: ssanghai@hmc.edu
// Created: March 16, 2021
// Modified:
//
// Purpose: Gshare predictor with parameterized global history register
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module oldgsharepredictor2
(input logic clk,
input logic reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushD, FlushE, FlushM, FlushW,
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM,
output logic [1:0] DirPredictionF,
// update
input logic [4:0] InstrClassE,
input logic [4:0] BPInstrClassE,
input logic [4:0] BPInstrClassD,
input logic [4:0] BPInstrClassF,
output logic DirPredictionWrongE,
input logic PCSrcE
);
logic [`BPRED_SIZE+1:0] GHR, GHRNext;
logic [`BPRED_SIZE-1:0] PHTUpdateAdr, PHTUpdateAdr0, PHTUpdateAdr1;
logic PHTUpdateEN;
logic BPClassWrongNonCFI;
logic BPClassWrongCFI;
logic BPClassRightNonCFI;
logic BPClassRightBPWrong;
logic BPClassRightBPRight;
logic [1:0] DirPredictionD, DirPredictionE;
logic [1:0] NewDirPredictionE;
logic [6:0] GHRMuxSel;
logic GHRUpdateEN;
logic [`BPRED_SIZE-1:0] GHRLookup;
assign BPClassRightNonCFI = ~BPInstrClassE[0] & ~InstrClassE[0];
assign BPClassWrongCFI = ~BPInstrClassE[0] & InstrClassE[0];
assign BPClassWrongNonCFI = BPInstrClassE[0] & ~InstrClassE[0];
assign BPClassRightBPWrong = BPInstrClassE[0] & InstrClassE[0] & DirPredictionWrongE;
assign BPClassRightBPRight = BPInstrClassE[0] & InstrClassE[0] & ~DirPredictionWrongE;
// GHR update selection, 1 hot encoded.
assign GHRMuxSel[0] = ~BPInstrClassF[0] & (BPClassRightNonCFI | BPClassRightBPRight);
assign GHRMuxSel[1] = BPClassWrongCFI & ~BPInstrClassD[0];
assign GHRMuxSel[2] = BPClassWrongNonCFI & ~BPInstrClassD[0];
assign GHRMuxSel[3] = (BPClassRightBPWrong & ~BPInstrClassD[0]) | (BPClassWrongCFI & BPInstrClassD[0]);
assign GHRMuxSel[4] = BPClassWrongNonCFI & BPInstrClassD[0];
assign GHRMuxSel[5] = InstrClassE[0] & BPClassRightBPWrong & BPInstrClassD[0];
assign GHRMuxSel[6] = BPInstrClassF[0] & (BPClassRightNonCFI | (InstrClassE[0] & BPClassRightBPRight));
assign GHRUpdateEN = (| GHRMuxSel[5:1] & ~StallE) | GHRMuxSel[6] & ~StallF;
// hoping this created a AND-OR mux.
always_comb begin
case (GHRMuxSel)
7'b000_0001: GHRNext = GHR[`BPRED_SIZE-1+2:0]; // no change
7'b000_0010: GHRNext = {GHR[`BPRED_SIZE-2+2:0], PCSrcE}; // branch update
7'b000_0100: GHRNext = {1'b0, GHR[`BPRED_SIZE+1:1]}; // repair 1
7'b000_1000: GHRNext = {GHR[`BPRED_SIZE-1+2:1], PCSrcE}; // branch update with mis prediction correction
7'b001_0000: GHRNext = {2'b00, GHR[`BPRED_SIZE+1:2]}; // repair 2
7'b010_0000: GHRNext = {1'b0, GHR[`BPRED_SIZE+1:2], PCSrcE}; // branch update + repair 1
7'b100_0000: GHRNext = {GHR[`BPRED_SIZE-2+2:0], DirPredictionF[1]}; // speculative update
default: GHRNext = GHR[`BPRED_SIZE-1+2:0];
endcase
end
flopenr #(`BPRED_SIZE+2) GlobalHistoryRegister(.clk(clk),
.reset(reset),
.en((GHRUpdateEN)),
.d(GHRNext),
.q(GHR));
// if actively updating the GHR at the time of prediction we want to us
// GHRNext as the lookup rather than GHR.
assign PHTUpdateAdr0 = InstrClassE[0] ? GHR[`BPRED_SIZE:1] : GHR[`BPRED_SIZE-1:0];
assign PHTUpdateAdr1 = InstrClassE[0] ? GHR[`BPRED_SIZE+1:2] : GHR[`BPRED_SIZE:1];
assign PHTUpdateAdr = BPInstrClassD[0] ? PHTUpdateAdr1 : PHTUpdateAdr0;
assign PHTUpdateEN = InstrClassE[0] & ~StallE;
assign GHRLookup = |GHRMuxSel[6:1] ? GHRNext[`BPRED_SIZE-1:0] : GHR[`BPRED_SIZE-1:0];
// Make Prediction by reading the correct address in the PHT and also update the new address in the PHT
ram2p1r1wb #(`BPRED_SIZE, 2) PHT(.clk(clk),
.reset(reset),
//.RA1(GHR[`BPRED_SIZE-1:0]),
.ra1(GHRLookup ^ PCNextF[`BPRED_SIZE:1]),
.rd1(DirPredictionF),
.ren1(~StallF),
.wa2(PHTUpdateAdr ^ PCE[`BPRED_SIZE:1]),
.wd2(NewDirPredictionE),
.wen2(PHTUpdateEN),
.bwe2(2'b11));
// DirPrediction pipeline
flopenr #(2) PredictionRegD(clk, reset, ~StallD, DirPredictionF, DirPredictionD);
flopenr #(2) PredictionRegE(clk, reset, ~StallE, DirPredictionD, DirPredictionE);
// New prediction pipeline
satCounter2 BPDirUpdateE(.BrDir(PCSrcE), .OldState(DirPredictionE), .NewState(NewDirPredictionE));
assign DirPredictionWrongE = PCSrcE != DirPredictionE[1] & InstrClassE[0];
endmodule // gsharePredictor