fma synth warnings and errors removed

This commit is contained in:
Katherine Parry 2022-06-06 16:06:04 +00:00
parent 56a053fc3d
commit 8fa0fc4229
10 changed files with 217 additions and 197 deletions

View File

@ -38,7 +38,8 @@
`define IEEE754 0 `define IEEE754 0
// MISA RISC-V configuration per specification // MISA RISC-V configuration per specification
`define MISA (32'h00000104 | 1 << 5 | 1 << 3 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0 ) // ZYXWVUTSRQPONMLKJIHGFEDCBA
`define MISA 32'b0000000000101000001000100101101
`define ZICSR_SUPPORTED 1 `define ZICSR_SUPPORTED 1
`define ZIFENCEI_SUPPORTED 1 `define ZIFENCEI_SUPPORTED 1
`define COUNTERS 32 `define COUNTERS 32

View File

@ -51,43 +51,45 @@
`define PMPCFG_ENTRIES (`PMP_ENTRIES/8) `define PMPCFG_ENTRIES (`PMP_ENTRIES/8)
// Floating point constants for Quad, Double, Single, and Half precisions // Floating point constants for Quad, Double, Single, and Half precisions
`define Q_LEN 128 `define Q_LEN 32'd128
`define Q_NE 15 `define Q_NE 32'd15
`define Q_NF 112 `define Q_NF 32'd112
`define Q_BIAS 16383 `define Q_BIAS 32'd16383
`define D_LEN 64 `define D_LEN 32'd64
`define D_NE 11 `define D_NE 32'd11
`define D_NF 52 `define D_NF 32'd52
`define D_BIAS 1023 `define D_BIAS 32'd1023
`define S_LEN 32 `define D_FMT 32'd1
`define S_NE 8 `define S_LEN 32'd32
`define S_NF 23 `define S_NE 32'd8
`define S_BIAS 127 `define S_NF 32'd23
`define H_LEN 16 `define S_BIAS 32'd127
`define H_NE 5 `define S_FMT 32'd1
`define H_NF 10 `define H_LEN 32'd16
`define H_BIAS 15 `define H_NE 32'd5
`define H_NF 32'd10
`define H_BIAS 32'd15
// Floating point length FLEN and number of exponent (NE) and fraction (NF) bits // Floating point length FLEN and number of exponent (NE) and fraction (NF) bits
`define FLEN (`Q_SUPPORTED ? `Q_LEN : `D_SUPPORTED ? `D_LEN : `F_SUPPORTED ? `S_LEN : `H_LEN) `define FLEN (`Q_SUPPORTED ? `Q_LEN : `D_SUPPORTED ? `D_LEN : `F_SUPPORTED ? `S_LEN : `H_LEN)
`define NE (`Q_SUPPORTED ? `Q_NE : `D_SUPPORTED ? `D_NE : `F_SUPPORTED ? `S_NE : `H_NE) `define NE (`Q_SUPPORTED ? `Q_NE : `D_SUPPORTED ? `D_NE : `F_SUPPORTED ? `S_NE : `H_NE)
`define NF (`Q_SUPPORTED ? `Q_NF : `D_SUPPORTED ? `D_NF : `F_SUPPORTED ? `S_NF : `H_NF) `define NF (`Q_SUPPORTED ? `Q_NF : `D_SUPPORTED ? `D_NF : `F_SUPPORTED ? `S_NF : `H_NF)
`define FMT (`Q_SUPPORTED ? 3 : `D_SUPPORTED ? 1 : `F_SUPPORTED ? 0 : 2) `define FMT (`Q_SUPPORTED ? 2'd3 : `D_SUPPORTED ? 2'd1 : `F_SUPPORTED ? 2'd0 : 2'd2)
`define BIAS (`Q_SUPPORTED ? `Q_BIAS : `D_SUPPORTED ? `D_BIAS : `F_SUPPORTED ? `S_BIAS : `H_BIAS) `define BIAS (`Q_SUPPORTED ? `Q_BIAS : `D_SUPPORTED ? `D_BIAS : `F_SUPPORTED ? `S_BIAS : `H_BIAS)
// Floating point constants needed for FPU paramerterization // Floating point constants needed for FPU paramerterization
`define FPSIZES ((3)'(`Q_SUPPORTED)+(3)'(`D_SUPPORTED)+(3)'(`F_SUPPORTED)+(3)'(`ZFH_SUPPORTED)) `define FPSIZES ((32)'(`Q_SUPPORTED)+(32)'(`D_SUPPORTED)+(32)'(`F_SUPPORTED)+(32)'(`ZFH_SUPPORTED))
`define FMTBITS (((`FPSIZES==3'b011)|(`FPSIZES==3'b100)) ? 2 : 1) `define FMTBITS ((`FPSIZES>=3)+1)
`define LEN1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_LEN : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_LEN : `H_LEN) `define LEN1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_LEN : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_LEN : `H_LEN)
`define NE1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NE : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NE : `H_NE) `define NE1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NE : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NE : `H_NE)
`define NF1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NF : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NF : `H_NF) `define NF1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NF : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NF : `H_NF)
`define FMT1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? 1 : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? 0 : 2) `define FMT1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? 2'd1 : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? 2'd0 : 2'd2)
`define BIAS1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_BIAS : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_BIAS : `H_BIAS) `define BIAS1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_BIAS : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_BIAS : `H_BIAS)
`define LEN2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_LEN : `H_LEN) `define LEN2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_LEN : `H_LEN)
`define NE2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NE : `H_NE) `define NE2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NE : `H_NE)
`define NF2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NF : `H_NF) `define NF2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NF : `H_NF)
`define FMT2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? 0 : 2) `define FMT2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? 2'd0 : 2'd2)
`define BIAS2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_BIAS : `H_BIAS) `define BIAS2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_BIAS : `H_BIAS)
// Disable spurious Verilator warnings // Disable spurious Verilator warnings

View File

@ -5,7 +5,7 @@ export PATH=$PATH:/usr/local/bin/
verilator=`which verilator` verilator=`which verilator`
basepath=$(dirname $0)/.. basepath=$(dirname $0)/..
for config in rv64fp rv32e rv64gc rv32gc rv32ic; do for config in rv64fp rv64fpquad rv32e rv64gc rv32gc rv32ic; do
echo "$config linting..." echo "$config linting..."
if !($verilator --lint-only "$@" --top-module wallypipelinedsoc "-I$basepath/config/shared" "-I$basepath/config/$config" $basepath/src/*/*.sv $basepath/src/*/*/*.sv --relative-includes); then if !($verilator --lint-only "$@" --top-module wallypipelinedsoc "-I$basepath/config/shared" "-I$basepath/config/$config" $basepath/src/*/*.sv $basepath/src/*/*/*.sv --relative-includes); then
echo "Exiting after $config lint due to errors or warnings" echo "Exiting after $config lint due to errors or warnings"

View File

@ -1,2 +1,2 @@
vsim -do "do wally-pipelined.do rv32e imperas64d" vsim -do "do wally-pipelined.do rv32gc arch32f"

View File

@ -122,7 +122,7 @@ module fctrl (
else if (`FPSIZES == 2)begin else if (`FPSIZES == 2)begin
logic [1:0] FmtTmp; logic [1:0] FmtTmp;
assign FmtTmp = (FResultSelD == 2'b00) ? {~Funct3D[1], ~(Funct3D[1]^Funct3D[0])} : ((Funct7D[6:3] == 4'b0100)&OpD[4]) ? Rs2D[1:0] : Funct7D[1:0]; assign FmtTmp = (FResultSelD == 2'b00) ? {~Funct3D[1], ~(Funct3D[1]^Funct3D[0])} : ((Funct7D[6:3] == 4'b0100)&OpD[4]) ? Rs2D[1:0] : Funct7D[1:0];
assign FmtD = `FMT == FmtTmp; assign FmtD = (`FMT == FmtTmp);
end end
else if (`FPSIZES == 3|`FPSIZES == 4) else if (`FPSIZES == 3|`FPSIZES == 4)
assign FmtD = (FResultSelD == 2'b00) ? {~Funct3D[1], ~(Funct3D[1]^Funct3D[0])} : ((Funct7D[6:3] == 4'b0100)&OpD[4]) ? Rs2D[1:0] : Funct7D[1:0]; assign FmtD = (FResultSelD == 2'b00) ? {~Funct3D[1], ~(Funct3D[1]^Funct3D[0])} : ((Funct7D[6:3] == 4'b0100)&OpD[4]) ? Rs2D[1:0] : Funct7D[1:0];

View File

@ -2,6 +2,7 @@
`include "wally-config.vh" `include "wally-config.vh"
// largest length in IEU/FPU // largest length in IEU/FPU
`define LGLEN ((`NF<`XLEN) ? `XLEN : `NF) `define LGLEN ((`NF<`XLEN) ? `XLEN : `NF)
`define LOGLGLEN $unsigned($clog2(`LGLEN+1))
module fcvt ( module fcvt (
input logic XSgnE, // input's sign input logic XSgnE, // input's sign
@ -42,7 +43,7 @@ module fcvt (
logic [`XLEN-1:0] TrimInt; // integer trimmed to the correct size logic [`XLEN-1:0] TrimInt; // integer trimmed to the correct size
logic [`LGLEN-1:0] LzcIn; // input to the Leading Zero Counter (priority encoder) logic [`LGLEN-1:0] LzcIn; // input to the Leading Zero Counter (priority encoder)
logic [`NE:0] CalcExp; // the calculated expoent logic [`NE:0] CalcExp; // the calculated expoent
logic [$clog2(`LGLEN+1)-1:0] ShiftAmt; // how much to shift by logic [`LOGLGLEN-1:0] ShiftAmt; // how much to shift by
logic [`LGLEN+`NF:0] ShiftIn; // number to be shifted logic [`LGLEN+`NF:0] ShiftIn; // number to be shifted
logic ResDenormUf;// does the result underflow or is denormalized logic ResDenormUf;// does the result underflow or is denormalized
logic ResUf; // does the result underflow logic ResUf; // does the result underflow
@ -72,7 +73,7 @@ module fcvt (
logic Int64; // is the integer 64 bits? logic Int64; // is the integer 64 bits?
logic IntToFp; // is the opperation an int->fp conversion? logic IntToFp; // is the opperation an int->fp conversion?
logic ToInt; // is the opperation an fp->int conversion? logic ToInt; // is the opperation an fp->int conversion?
logic [$clog2(`LGLEN+1)-1:0] ZeroCnt; // output from the LZC logic [`LOGLGLEN-1:0] ZeroCnt; // output from the LZC
// seperate OpCtrl for code readability // seperate OpCtrl for code readability
@ -143,9 +144,9 @@ module fcvt (
// - only shift fp -> fp if the intital value is denormalized // - only shift fp -> fp if the intital value is denormalized
// - this is a problem because the input to the lzc was the fraction rather than the mantissa // - this is a problem because the input to the lzc was the fraction rather than the mantissa
// - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true? // - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true?
assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN+1)-1:0]&{$clog2(`LGLEN+1){~CalcExp[`NE]}} : assign ShiftAmt = ToInt ? CalcExp[`LOGLGLEN-1:0]&{`LOGLGLEN{~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? ($clog2(`LGLEN+1))'(`NF-1)+CalcExp[$clog2(`LGLEN+1)-1:0] : ResDenormUf&~IntToFp ? (`LOGLGLEN)'(`NF-1)+CalcExp[`LOGLGLEN-1:0] :
(ZeroCnt+1)&{$clog2(`LGLEN+1){XDenormE|IntToFp}}; (ZeroCnt+1)&{`LOGLGLEN{XDenormE|IntToFp}};
// shift // shift
// fp -> int: | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp // fp -> int: | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
@ -261,34 +262,34 @@ module fcvt (
// - shift left to normilize (-1-ZeroCnt) // - shift left to normilize (-1-ZeroCnt)
// - newBias to make the biased exponent // - newBias to make the biased exponent
// //
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XDenormE|IntToFp} - {{`NE-$clog2(`LGLEN+1)+1{1'b0}}, (ZeroCnt&{$clog2(`LGLEN+1){XDenormE|IntToFp}})}; assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XDenormE|IntToFp} - {{`NE-`LOGLGLEN+1{1'b0}}, (ZeroCnt&{`LOGLGLEN{XDenormE|IntToFp}})};
// find if the result is dnormal or underflows // find if the result is dnormal or underflows
// - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0) // - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0)
// - can't underflow an integer to Fp conversion // - can't underflow an integer to Fp conversion
assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE&~IntToFp; assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE&~IntToFp;
// choose the negative of the fraction size // choose the negative of the fraction size
if (`FPSIZES == 1) begin if (`FPSIZES == 1) begin
assign ResNegNF = -`NF; assign ResNegNF = -($clog2(`NF)+1)'(`NF);
end else if (`FPSIZES == 2) begin end else if (`FPSIZES == 2) begin
assign ResNegNF = OutFmt ? -`NF : -`NF1; assign ResNegNF = OutFmt ? -($clog2(`NF)+1)'(`NF) : -($clog2(`NF)+1)'(`NF1);
end else if (`FPSIZES == 3) begin end else if (`FPSIZES == 3) begin
always_comb always_comb
case (OutFmt) case (OutFmt)
`FMT: ResNegNF = -`NF; `FMT: ResNegNF = -($clog2(`NF)+1)'(`NF);
`FMT1: ResNegNF = -`NF1; `FMT1: ResNegNF = -($clog2(`NF)+1)'(`NF1);
`FMT2: ResNegNF = -`NF2; `FMT2: ResNegNF = -($clog2(`NF)+1)'(`NF2);
default: ResNegNF = 1'bx; default: ResNegNF = 1'bx;
endcase endcase
end else if (`FPSIZES == 4) begin end else if (`FPSIZES == 4) begin
always_comb always_comb
case (OutFmt) case (OutFmt)
2'h3: ResNegNF = -`Q_NF; 2'h3: ResNegNF = -($clog2(`NF)+1)'(`Q_NF);
2'h1: ResNegNF = -`D_NF; 2'h1: ResNegNF = -($clog2(`NF)+1)'(`D_NF);
2'h0: ResNegNF = -`S_NF; 2'h0: ResNegNF = -($clog2(`NF)+1)'(`S_NF);
2'h2: ResNegNF = -`H_NF; 2'h2: ResNegNF = -($clog2(`NF)+1)'(`H_NF);
endcase endcase
end end
// determine if the result underflows ??? -> fp // determine if the result underflows ??? -> fp
@ -453,10 +454,10 @@ module fcvt (
// find the maximum exponent (the exponent and larger overflows) // find the maximum exponent (the exponent and larger overflows)
if (`FPSIZES == 1) begin if (`FPSIZES == 1) begin
assign MaxExp = ToInt ? Int64 ? 65 : 33 : {`NE{1'b1}}; assign MaxExp = ToInt ? Int64 ? (`NE)'(65) : (`NE)'(33) : {`NE{1'b1}};
end else if (`FPSIZES == 2) begin end else if (`FPSIZES == 2) begin
assign MaxExp = ToInt ? Int64 ? 65 : 33 : assign MaxExp = ToInt ? Int64 ? (`NE)'($unsigned(65)) : (`NE)'($unsigned(33)) :
OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}}; OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end else if (`FPSIZES == 3) begin end else if (`FPSIZES == 3) begin
@ -476,7 +477,7 @@ module fcvt (
MaxExpFp = 1'bx; MaxExpFp = 1'bx;
end end
endcase endcase
assign MaxExp = ToInt ? Int64 ? 65 : 33 : MaxExpFp; assign MaxExp = ToInt ? Int64 ? (`NE)'(65) : (`NE)'(33) : MaxExpFp;
end else if (`FPSIZES == 4) begin end else if (`FPSIZES == 4) begin
logic [`NE-1:0] MaxExpFp; logic [`NE-1:0] MaxExpFp;
@ -495,7 +496,7 @@ module fcvt (
MaxExpFp = {{`Q_NE-`H_NE{1'b0}}, {`H_NE{1'b1}}}; MaxExpFp = {{`Q_NE-`H_NE{1'b0}}, {`H_NE{1'b1}}};
end end
endcase endcase
assign MaxExp = ToInt ? Int64 ? 65 : 33 : MaxExpFp; assign MaxExp = ToInt ? Int64 ? (`NE)'(65) : (`NE)'(33) : MaxExpFp;
end end
// if the result exponent is larger then the maximum possible exponent // if the result exponent is larger then the maximum possible exponent

View File

@ -81,7 +81,7 @@ module fma(
// E/M pipeline registers // E/M pipeline registers
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM); flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM); flopenrc #(`NE+2) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
flopenrc #($clog2(3*`NF+7)+8) EMRegFma4(clk, reset, FlushM, ~StallM, flopenrc #($clog2(3*`NF+7)+8) EMRegFma4(clk, reset, FlushM, ~StallM,
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0], ZDenormE}, {AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0], ZDenormE},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult, ZDenormM}); {AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult, ZDenormM});
@ -237,7 +237,7 @@ module align(
// - positive means the product is larger, so shift Z right // - positive means the product is larger, so shift Z right
// *** can we use ProdExpE instead of XExp/YExp to save an adder? DH 5/12/22 // *** can we use ProdExpE instead of XExp/YExp to save an adder? DH 5/12/22
// KP- yes we used ProdExpE originally but we did this for timing // KP- yes we used ProdExpE originally but we did this for timing
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpE} + {2'b0, YExpE} - {2'b0, (`NE)'(`BIAS)} + `NF+3 - {2'b0, ZExpE}; assign AlignCnt = XZeroE|YZeroE ? -(`NE+2)'($unsigned(1)) : {2'b0, XExpE} + {2'b0, YExpE} - {2'b0, (`NE)'(`BIAS)} + (`NE+2)'(`NF)+3 - {2'b0, ZExpE};
// Defualt Addition without shifting // Defualt Addition without shifting
// | 54'b0 | 106'b(product) | 2'b0 | // | 54'b0 | 106'b(product) | 2'b0 |
@ -320,7 +320,7 @@ module add(
// Do the addition // Do the addition
// - calculate a positive and negitive sum in parallel // - calculate a positive and negitive sum in parallel
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE}; assign PreSum = AlignedAddendInv + {{`NF+3{1'b0}}, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
assign NegPreSum = XZeroE|YZeroE|KillProdE ? {1'b0, AlignedAddendE} : {1'b0, AlignedAddendE} + {{`NF+3{1'b1}}, ~ProdManKilled, 2'b0} + {(3*`NF+7)'(4)}; assign NegPreSum = XZeroE|YZeroE|KillProdE ? {1'b0, AlignedAddendE} : {1'b0, AlignedAddendE} + {{`NF+3{1'b1}}, ~ProdManKilled, 2'b0} + {(3*`NF+7)'(4)};
// Is the sum negitive // Is the sum negitive
@ -543,7 +543,7 @@ module normalize(
assign SumZero = ~(|SumM); assign SumZero = ~(|SumM);
// calculate the sum's exponent // calculate the sum's exponent
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4)); assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM} : ProdExpM + -({{`NE+2-$unsigned($clog2(3*`NF+7)){1'b0}}, NormCntM} + 1 - (`NE+2)'(`NF+4));
//convert the sum's exponent into the propper percision //convert the sum's exponent into the propper percision
if (`FPSIZES == 1) begin if (`FPSIZES == 1) begin
@ -556,8 +556,8 @@ module normalize(
always_comb begin always_comb begin
case (FmtM) case (FmtM)
`FMT: SumExpTmp = SumExpTmpTmp; `FMT: SumExpTmp = SumExpTmpTmp;
`FMT1: SumExpTmp = (SumExpTmpTmp-`BIAS+`BIAS1)&{`NE+2{|SumExpTmpTmp}}; `FMT1: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`BIAS1))&{`NE+2{|SumExpTmpTmp}};
`FMT2: SumExpTmp = (SumExpTmpTmp-`BIAS+`BIAS2)&{`NE+2{|SumExpTmpTmp}}; `FMT2: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`BIAS2))&{`NE+2{|SumExpTmpTmp}};
default: SumExpTmp = `NE+2'bx; default: SumExpTmp = `NE+2'bx;
endcase endcase
end end
@ -566,9 +566,9 @@ module normalize(
always_comb begin always_comb begin
case (FmtM) case (FmtM)
2'h3: SumExpTmp = SumExpTmpTmp; 2'h3: SumExpTmp = SumExpTmpTmp;
2'h1: SumExpTmp = (SumExpTmpTmp-`BIAS+`D_BIAS)&{`NE+2{|SumExpTmpTmp}}; 2'h1: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`D_BIAS))&{`NE+2{|SumExpTmpTmp}};
2'h0: SumExpTmp = (SumExpTmpTmp-`BIAS+`S_BIAS)&{`NE+2{|SumExpTmpTmp}}; 2'h0: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`S_BIAS))&{`NE+2{|SumExpTmpTmp}};
2'h2: SumExpTmp = (SumExpTmpTmp-`BIAS+`H_BIAS)&{`NE+2{|SumExpTmpTmp}}; 2'h2: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`H_BIAS))&{`NE+2{|SumExpTmpTmp}};
endcase endcase
end end
@ -674,7 +674,7 @@ module normalize(
// Determine sum's exponent // Determine sum's exponent
// if plus1 If plus2 if said denorm but norm plus 1 if said denorm but norm plus 2 // if plus1 If plus2 if said denorm but norm plus 1 if said denorm but norm plus 2
assign SumExp = (SumExpTmp+{12'b0, LZAPlus1&~KillProdM}+{11'b0, LZAPlus2&~KillProdM, 1'b0}+{12'b0, ~ResultDenorm&PreResultDenorm&~KillProdM}+{12'b0, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}) & {`NE+2{~(SumZero|ResultDenorm)}}; assign SumExp = (SumExpTmp+{{`NE+1{1'b0}}, LZAPlus1&~KillProdM}+{{`NE{1'b0}}, LZAPlus2&~KillProdM, 1'b0}+{{`NE+1{1'b0}}, ~ResultDenorm&PreResultDenorm&~KillProdM}+{{`NE+1{1'b0}}, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}) & {`NE+2{~(SumZero|ResultDenorm)}};
// recalculate if the result is denormalized // recalculate if the result is denormalized
assign ResultDenorm = PreResultDenorm&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7]; assign ResultDenorm = PreResultDenorm&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];

View File

@ -107,7 +107,7 @@ module fpu (
logic FOpCtrlQ; logic FOpCtrlQ;
// result and flag signals // result and flag signals
logic [`FLEN-1:0] FDivResM, FDivResW; // divide/squareroot result logic [63:0] FDivResM, FDivResW; // divide/squareroot result
logic [4:0] FDivFlgM; // divide/squareroot flags logic [4:0] FDivFlgM; // divide/squareroot flags
logic [`FLEN-1:0] FMAResM, FMAResW; // FMA/multiply result logic [`FLEN-1:0] FMAResM, FMAResW; // FMA/multiply result
logic [4:0] FMAFlgM; // FMA/multiply result logic [4:0] FMAFlgM; // FMA/multiply result
@ -125,7 +125,7 @@ module fpu (
logic [`FLEN-1:0] FPUResultW; // final FP result being written to the FP register logic [`FLEN-1:0] FPUResultW; // final FP result being written to the FP register
// other signals // other signals
logic FDivSqrtDoneE; // is divide done logic FDivSqrtDoneE; // is divide done
logic [`FLEN-1:0] DivInput1E, DivInput2E; // inputs to divide/squareroot unit logic [63:0] DivInput1E, DivInput2E; // inputs to divide/squareroot unit
logic load_preload; // enable for FF on fpdivsqrt logic load_preload; // enable for FF on fpdivsqrt
logic [`FLEN-1:0] AlignedSrcAE; // align SrcA to the floating point format logic [`FLEN-1:0] AlignedSrcAE; // align SrcA to the floating point format
logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
@ -184,11 +184,11 @@ module fpu (
generate generate
if(`FPSIZES == 1) assign BoxedZeroE = 0; if(`FPSIZES == 1) assign BoxedZeroE = 0;
else if(`FPSIZES == 2) else if(`FPSIZES == 2)
mux2 #(`FLEN) fmulzeromux ({{`FLEN-`LEN1{1'b1}}, {`FLEN-`LEN1{1'b0}}}, (`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes mux2 #(`FLEN) fmulzeromux ({{`FLEN-`LEN1{1'b1}}, {`LEN1{1'b0}}}, (`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4) else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fmulzeromux ({{`FLEN-`S_LEN{1'b1}}, (`FLEN-`S_LEN)'(0)}, mux4 #(`FLEN) fmulzeromux ({{`FLEN-`S_LEN{1'b1}}, {`S_LEN{1'b0}}},
{{`FLEN-`D_LEN{1'b1}}, (`FLEN-`D_LEN)'(0)}, {{`FLEN-`D_LEN{1'b1}}, {`D_LEN{1'b0}}},
{{`FLEN-`H_LEN{1'b1}}, (`FLEN-`H_LEN)'(0)}, {{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}},
(`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes (`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
endgenerate endgenerate
@ -218,17 +218,27 @@ module fpu (
.FMAFlgM, .FMAResM); .FMAFlgM, .FMAResM);
// fpdivsqrt using Goldschmidt's iteration // fpdivsqrt using Goldschmidt's iteration
flopenrc #(`FLEN) reg_input1 (.d({XSgnE, XExpE, XManE[51:0]}), .q(DivInput1E), if(`FLEN == 64) begin
flopenrc #(64) reg_input1 (.d({FSrcXE[63:0]}), .q(DivInput1E),
.clear(FDivSqrtDoneE), .en(load_preload), .clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk)); .reset(reset), .clk(clk));
flopenrc #(`FLEN) reg_input2 (.d({YSgnE, YExpE, YManE[51:0]}), .q(DivInput2E), flopenrc #(64) reg_input2 (.d({FSrcYE[63:0]}), .q(DivInput2E),
.clear(FDivSqrtDoneE), .en(load_preload), .clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk)); .reset(reset), .clk(clk));
flopenrc #(8+int'(`FMTBITS-1)) reg_input3 (.d({XNaNE, YNaNE, XInfE, YInfE, XZeroE, YZeroE, FmtE, FOpCtrlE[0]}), end
else if (`FLEN == 32) begin
flopenrc #(64) reg_input1 (.d({32'b0, FSrcXE[31:0]}), .q(DivInput1E),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
flopenrc #(64) reg_input2 (.d({32'b0, FSrcYE[31:0]}), .q(DivInput2E),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
end
flopenrc #(8) reg_input3 (.d({XNaNE, YNaNE, XInfE, YInfE, XZeroE, YZeroE, FmtE[0], FOpCtrlE[0]}),
.q({XNaNQ, YNaNQ, XInfQ, YInfQ, XZeroQ, YZeroQ, FmtQ, FOpCtrlQ}), .q({XNaNQ, YNaNQ, XInfQ, YInfQ, XZeroQ, YZeroQ, FmtQ, FOpCtrlQ}),
.clear(FDivSqrtDoneE), .en(load_preload), .clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk)); .reset(reset), .clk(clk));
fpdiv_pipe fdivsqrt (.op1(DivInput1E), .op2(DivInput2E), .rm(FrmE[1:0]), .op_type(FOpCtrlQ), fpdiv_pipe fdivsqrt (.op1(DivInput1E[63:0]), .op2(DivInput2E[63:0]), .rm(FrmE[1:0]), .op_type(FOpCtrlQ),
.reset, .clk(clk), .start(FDivStartE), .P(~FmtQ), .OvEn(1'b1), .UnEn(1'b1), .reset, .clk(clk), .start(FDivStartE), .P(~FmtQ), .OvEn(1'b1), .UnEn(1'b1),
.XNaNQ, .YNaNQ, .XInfQ, .YInfQ, .XZeroQ, .YZeroQ, .load_preload, .XNaNQ, .YNaNQ, .XInfQ, .YInfQ, .XZeroQ, .YZeroQ, .load_preload,
.FDivBusyE, .done(FDivSqrtDoneE), .AS_Result(FDivResM), .Flags(FDivFlgM)); .FDivBusyE, .done(FDivSqrtDoneE), .AS_Result(FDivResM), .Flags(FDivFlgM));
@ -244,7 +254,8 @@ module fpu (
// data to be stored in memory - to IEU // data to be stored in memory - to IEU
// - FP uses NaN-blocking format // - FP uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s // - if there are any unsused bits the most significant bits are filled with 1s
assign FWriteDataE = FSrcYE[`XLEN-1:0]; if (`FLEN>`XLEN) assign FWriteDataE = FSrcYE[`XLEN-1:0];
else assign FWriteDataE = {{`XLEN-`FLEN{FSrcYE[`FLEN-1]}}, FSrcYE};
// NaN Block SrcA // NaN Block SrcA
generate generate
@ -262,8 +273,12 @@ module fpu (
mux4 #(5) FFlgMux(5'b0, 5'b0, {CmpNVE, 4'b0}, CvtFlgE, FResSelE, FFlgE); mux4 #(5) FFlgMux(5'b0, 5'b0, {CmpNVE, 4'b0}, CvtFlgE, FResSelE, FFlgE);
// select the result that may be written to the integer register - to IEU // select the result that may be written to the integer register - to IEU
mux4 #(`XLEN) IntResMux(CmpResE[`XLEN-1:0], FSrcXE[`XLEN-1:0], ClassResE, if (`FLEN>`XLEN)
CvtIntResE, FIntResSelE, FIntResE); mux4 #(`XLEN) IntResMux(CmpResE[`XLEN-1:0], FSrcXE[`XLEN-1:0], ClassResE,
CvtIntResE, FIntResSelE, FIntResE);
else
mux4 #(`XLEN) IntResMux({{`XLEN-`FLEN{CmpResE[`FLEN-1:0]}}, CmpResE}, {{`XLEN-`FLEN{FSrcXE[`FLEN-1:0]}}, FSrcXE}, ClassResE,
CvtIntResE, FIntResSelE, FIntResE);
// *** DH 5/25/22: CvtRes will move to mem stage. Premux in execute to save area, then make sure stalls are ok // *** DH 5/25/22: CvtRes will move to mem stage. Premux in execute to save area, then make sure stalls are ok
// *** make sure the fpu matches the chapter diagram // *** make sure the fpu matches the chapter diagram
@ -290,7 +305,7 @@ module fpu (
// M/W pipe registers // M/W pipe registers
flopenrc #(`FLEN) MWRegFma(clk, reset, FlushW, ~StallW, FMAResM, FMAResW); flopenrc #(`FLEN) MWRegFma(clk, reset, FlushW, ~StallW, FMAResM, FMAResW);
flopenrc #(`FLEN) MWRegDiv(clk, reset, FlushW, ~StallW, FDivResM, FDivResW); flopenrc #(64) MWRegDiv(clk, reset, FlushW, ~StallW, FDivResM, FDivResW);
flopenrc #(`FLEN) MWRegClass(clk, reset, FlushW, ~StallW, FResM, FResW); flopenrc #(`FLEN) MWRegClass(clk, reset, FlushW, ~StallW, FResM, FResW);
flopenrc #(4+int'(`FMTBITS-1)) MWCtrlReg(clk, reset, FlushW, ~StallW, flopenrc #(4+int'(`FMTBITS-1)) MWCtrlReg(clk, reset, FlushW, ~StallW,
{FRegWriteM, FResultSelM, FmtM}, {FRegWriteM, FResultSelM, FmtM},
@ -313,5 +328,6 @@ module fpu (
endgenerate endgenerate
// select the result to be written to the FP register // select the result to be written to the FP register
mux4 #(`FLEN) FPUResultMux (ReadResW, FMAResW, FDivResW, FResW, FResultSelW, FPUResultW); if(`FLEN>=64)
mux4 #(`FLEN) FPUResultMux (ReadResW, FMAResW, {{`FLEN-64{1'b0}},FDivResW}, FResW, FResultSelW, FPUResultW);
endmodule // fpu endmodule // fpu

View File

@ -1,11 +1,11 @@
`include "wally-config.vh" `include "wally-config.vh"
module unpack ( module unpack (
input logic [$signed(`FLEN)-$signed(1):0] X, Y, Z, // inputs from register file input logic [`FLEN-1:0] X, Y, Z, // inputs from register file
input logic [$signed(`FMTBITS)-$signed(1):0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half input logic [`FMTBITS-1:0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half
output logic XSgnE, YSgnE, ZSgnE, // sign bits of XYZ output logic XSgnE, YSgnE, ZSgnE, // sign bits of XYZ
output logic [$signed(`NE)-$signed(1):0] XExpE, YExpE, ZExpE, // exponents of XYZ (converted to largest supported precision) output logic [`NE-1:0] XExpE, YExpE, ZExpE, // exponents of XYZ (converted to largest supported precision)
output logic [$signed(`NF):0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision) output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
output logic XDenormE, ZDenormE, // is XYZ denormalized output logic XDenormE, ZDenormE, // is XYZ denormalized
@ -14,7 +14,7 @@ module unpack (
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf) output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
); );
logic [$signed(`NF)-$signed(1):0] XFracE, YFracE, ZFracE; //Fraction of XYZ logic [`NF-1:0] XFracE, YFracE, ZFracE; //Fraction of XYZ
logic XExpNonZero, YExpNonZero, ZExpNonZero; // is the exponent of XYZ non-zero logic XExpNonZero, YExpNonZero, ZExpNonZero; // is the exponent of XYZ non-zero
logic XFracZero, YFracZero, ZFracZero; // is the fraction zero logic XFracZero, YFracZero, ZFracZero; // is the fraction zero
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s logic YExpMaxE, ZExpMaxE; // is the exponent all 1s

View File

@ -261,26 +261,26 @@ module testbenchfp;
Fmt = {Fmt, 2'b11}; Fmt = {Fmt, 2'b11};
end end
end end
if (TEST === "div" | TEST === "all") begin // if division is being tested // if (TEST === "div" | TEST === "all") begin // if division is being tested
// add the divide tests/op-ctrls/unit/fmt // // add the divide tests/op-ctrls/unit/fmt
Tests = {Tests, f128div}; // Tests = {Tests, f128div};
OpCtrl = {OpCtrl, `DIV_OPCTRL}; // OpCtrl = {OpCtrl, `DIV_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b11}; // Fmt = {Fmt, 2'b11};
end // end
end // end
if (TEST === "sqrt" | TEST === "all") begin // if square-root is being tested // if (TEST === "sqrt" | TEST === "all") begin // if square-root is being tested
// add the square-root tests/op-ctrls/unit/fmt // // add the square-root tests/op-ctrls/unit/fmt
Tests = {Tests, f128sqrt}; // Tests = {Tests, f128sqrt};
OpCtrl = {OpCtrl, `SQRT_OPCTRL}; // OpCtrl = {OpCtrl, `SQRT_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b11}; // Fmt = {Fmt, 2'b11};
end // end
end // end
if (TEST === "fma" | TEST === "all") begin // if fused-mutliply-add is being tested if (TEST === "fma" | TEST === "all") begin // if fused-mutliply-add is being tested
// add each rounding mode to it's own list of tests // add each rounding mode to it's own list of tests
// - fma tests are very long, so run all rounding modes in parallel // - fma tests are very long, so run all rounding modes in parallel
@ -390,26 +390,26 @@ module testbenchfp;
Fmt = {Fmt, 2'b01}; Fmt = {Fmt, 2'b01};
end end
end end
if (TEST === "div" | TEST === "all") begin // if division is being tested // if (TEST === "div" | TEST === "all") begin // if division is being tested
// add the correct tests/op-ctrls/unit/fmt to their lists // // add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f64div}; // Tests = {Tests, f64div};
OpCtrl = {OpCtrl, `DIV_OPCTRL}; // OpCtrl = {OpCtrl, `DIV_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b01}; // Fmt = {Fmt, 2'b01};
end // end
end // end
if (TEST === "sqrt" | TEST === "all") begin // if square-root is being tessted // if (TEST === "sqrt" | TEST === "all") begin // if square-root is being tessted
// add the correct tests/op-ctrls/unit/fmt to their lists // // add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f64sqrt}; // Tests = {Tests, f64sqrt};
OpCtrl = {OpCtrl, `SQRT_OPCTRL}; // OpCtrl = {OpCtrl, `SQRT_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b01}; // Fmt = {Fmt, 2'b01};
end // end
end // end
if (TEST === "fma" | TEST === "all") begin // if the fused multiply add is being tested if (TEST === "fma" | TEST === "all") begin // if the fused multiply add is being tested
// add each rounding mode to it's own list of tests // add each rounding mode to it's own list of tests
// - fma tests are very long, so run all rounding modes in parallel // - fma tests are very long, so run all rounding modes in parallel
@ -502,26 +502,26 @@ module testbenchfp;
Fmt = {Fmt, 2'b00}; Fmt = {Fmt, 2'b00};
end end
end end
if (TEST === "div" | TEST === "all") begin // if division is being tested // if (TEST === "div" | TEST === "all") begin // if division is being tested
// add the correct tests/op-ctrls/unit/fmt to their lists // // add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f32div}; // Tests = {Tests, f32div};
OpCtrl = {OpCtrl, `DIV_OPCTRL}; // OpCtrl = {OpCtrl, `DIV_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b00}; // Fmt = {Fmt, 2'b00};
end // end
end // end
if (TEST === "sqrt" | TEST === "all") begin // if sqrt is being tested // if (TEST === "sqrt" | TEST === "all") begin // if sqrt is being tested
// add the correct tests/op-ctrls/unit/fmt to their lists // // add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f32sqrt}; // Tests = {Tests, f32sqrt};
OpCtrl = {OpCtrl, `SQRT_OPCTRL}; // OpCtrl = {OpCtrl, `SQRT_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b00}; // Fmt = {Fmt, 2'b00};
end // end
end // end
if (TEST === "fma" | TEST === "all") begin // if fma is being tested if (TEST === "fma" | TEST === "all") begin // if fma is being tested
// add each rounding mode to it's own list of tests // add each rounding mode to it's own list of tests
// - fma tests are very long, so run all rounding modes in parallel // - fma tests are very long, so run all rounding modes in parallel
@ -596,26 +596,26 @@ module testbenchfp;
Fmt = {Fmt, 2'b10}; Fmt = {Fmt, 2'b10};
end end
end end
if (TEST === "div" | TEST === "all") begin // if division is being tested // if (TEST === "div" | TEST === "all") begin // if division is being tested
// add the correct tests/op-ctrls/unit/fmt to their lists // // add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f16div}; // Tests = {Tests, f16div};
OpCtrl = {OpCtrl, `DIV_OPCTRL}; // OpCtrl = {OpCtrl, `DIV_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b10}; // Fmt = {Fmt, 2'b10};
end // end
end // end
if (TEST === "sqrt" | TEST === "all") begin // if sqrt is being tested // if (TEST === "sqrt" | TEST === "all") begin // if sqrt is being tested
// add the correct tests/op-ctrls/unit/fmt to their lists // // add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f16sqrt}; // Tests = {Tests, f16sqrt};
OpCtrl = {OpCtrl, `SQRT_OPCTRL}; // OpCtrl = {OpCtrl, `SQRT_OPCTRL};
WriteInt = {WriteInt, 1'b0}; // WriteInt = {WriteInt, 1'b0};
for(int i = 0; i<5; i++) begin // for(int i = 0; i<5; i++) begin
Unit = {Unit, `DIVUNIT}; // Unit = {Unit, `DIVUNIT};
Fmt = {Fmt, 2'b10}; // Fmt = {Fmt, 2'b10};
end // end
end // end
if (TEST === "fma" | TEST === "all") begin // if fma is being tested if (TEST === "fma" | TEST === "all") begin // if fma is being tested
// add each rounding mode to it's own list of tests // add each rounding mode to it's own list of tests
// - fma tests are very long, so run all rounding modes in parallel // - fma tests are very long, so run all rounding modes in parallel
@ -673,10 +673,10 @@ module testbenchfp;
// - 1 for the larger precision // - 1 for the larger precision
// - 0 for the smaller precision // - 0 for the smaller precision
always_comb begin always_comb begin
if(`FMTBITS == 2) ModFmt = FmtVal; if(`FMTBITS == 1) ModFmt = FmtVal == `FMT;
else ModFmt = FmtVal === `FMT; else ModFmt = FmtVal;
if(`FMTBITS == 2) FmaModFmt = FmaFmtVal; if(`FMTBITS == 1) FmaModFmt = FmaFmtVal == `FMT;
else FmaModFmt = FmaFmtVal === `FMT; else FmaModFmt = FmaFmtVal;
end end
// extract the inputs (X, Y, Z, SrcA) and the output (Ans, AnsFlg) from the current test vector // extract the inputs (X, Y, Z, SrcA) and the output (Ans, AnsFlg) from the current test vector
@ -1028,111 +1028,111 @@ end
// - the sign of the NaN does not matter for the opperations being tested // - the sign of the NaN does not matter for the opperations being tested
// - when 2 or more NaNs are inputed the NaN that is propigated doesn't matter // - when 2 or more NaNs are inputed the NaN that is propigated doesn't matter
case (FmaFmtVal) case (FmaFmtVal)
4'b11: FmaRneNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 4'b11: FmaRneNaNGood =(((`IEEE754==0)&FmaRneAnsNaN&(FmaRneRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRneAnsFlg[4]&(FmaRneRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (FmaRneAnsFlg[4]&(FmaRneRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRneXNaN&(FmaRneRes[`Q_LEN-2:0] === {FmaRneX[`Q_LEN-2:`Q_NF],1'b1,FmaRneX[`Q_NF-2:0]})) | (FmaRneXNaN&(FmaRneRes[`Q_LEN-2:0] === {FmaRneX[`Q_LEN-2:`Q_NF],1'b1,FmaRneX[`Q_NF-2:0]})) |
(FmaRneYNaN&(FmaRneRes[`Q_LEN-2:0] === {FmaRneY[`Q_LEN-2:`Q_NF],1'b1,FmaRneY[`Q_NF-2:0]})) | (FmaRneYNaN&(FmaRneRes[`Q_LEN-2:0] === {FmaRneY[`Q_LEN-2:`Q_NF],1'b1,FmaRneY[`Q_NF-2:0]})) |
(FmaRneZNaN&(FmaRneRes[`Q_LEN-2:0] === {FmaRneZ[`Q_LEN-2:`Q_NF],1'b1,FmaRneZ[`Q_NF-2:0]}))); (FmaRneZNaN&(FmaRneRes[`Q_LEN-2:0] === {FmaRneZ[`Q_LEN-2:`Q_NF],1'b1,FmaRneZ[`Q_NF-2:0]})));
4'b01: FmaRneNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 4'b01: FmaRneNaNGood =(((`IEEE754==0)&FmaRneAnsNaN&(FmaRneRes[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRneAnsFlg[4]&(FmaRneRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (FmaRneAnsFlg[4]&(FmaRneRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRneXNaN&(FmaRneRes[`D_LEN-2:0] === {FmaRneX[`D_LEN-2:`D_NF],1'b1,FmaRneX[`D_NF-2:0]})) | (FmaRneXNaN&(FmaRneRes[`D_LEN-2:0] === {FmaRneX[`D_LEN-2:`D_NF],1'b1,FmaRneX[`D_NF-2:0]})) |
(FmaRneYNaN&(FmaRneRes[`D_LEN-2:0] === {FmaRneY[`D_LEN-2:`D_NF],1'b1,FmaRneY[`D_NF-2:0]})) | (FmaRneYNaN&(FmaRneRes[`D_LEN-2:0] === {FmaRneY[`D_LEN-2:`D_NF],1'b1,FmaRneY[`D_NF-2:0]})) |
(FmaRneZNaN&(FmaRneRes[`D_LEN-2:0] === {FmaRneZ[`D_LEN-2:`D_NF],1'b1,FmaRneZ[`D_NF-2:0]}))); (FmaRneZNaN&(FmaRneRes[`D_LEN-2:0] === {FmaRneZ[`D_LEN-2:`D_NF],1'b1,FmaRneZ[`D_NF-2:0]})));
4'b00: FmaRneNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 4'b00: FmaRneNaNGood =(((`IEEE754==0)&FmaRneAnsNaN&(FmaRneRes[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRneAnsFlg[4]&(FmaRneRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (FmaRneAnsFlg[4]&(FmaRneRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRneXNaN&(FmaRneRes[`S_LEN-2:0] === {FmaRneX[`S_LEN-2:`S_NF],1'b1,FmaRneX[`S_NF-2:0]})) | (FmaRneXNaN&(FmaRneRes[`S_LEN-2:0] === {FmaRneX[`S_LEN-2:`S_NF],1'b1,FmaRneX[`S_NF-2:0]})) |
(FmaRneYNaN&(FmaRneRes[`S_LEN-2:0] === {FmaRneY[`S_LEN-2:`S_NF],1'b1,FmaRneY[`S_NF-2:0]})) | (FmaRneYNaN&(FmaRneRes[`S_LEN-2:0] === {FmaRneY[`S_LEN-2:`S_NF],1'b1,FmaRneY[`S_NF-2:0]})) |
(FmaRneZNaN&(FmaRneRes[`S_LEN-2:0] === {FmaRneZ[`S_LEN-2:`S_NF],1'b1,FmaRneZ[`S_NF-2:0]}))); (FmaRneZNaN&(FmaRneRes[`S_LEN-2:0] === {FmaRneZ[`S_LEN-2:`S_NF],1'b1,FmaRneZ[`S_NF-2:0]})));
4'b10: FmaRneNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 4'b10: FmaRneNaNGood =(((`IEEE754==0)&FmaRneAnsNaN&(FmaRneRes[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRneAnsFlg[4]&(FmaRneRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (FmaRneAnsFlg[4]&(FmaRneRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRneXNaN&(FmaRneRes[`H_LEN-2:0] === {FmaRneX[`H_LEN-2:`H_NF],1'b1,FmaRneX[`H_NF-2:0]})) | (FmaRneXNaN&(FmaRneRes[`H_LEN-2:0] === {FmaRneX[`H_LEN-2:`H_NF],1'b1,FmaRneX[`H_NF-2:0]})) |
(FmaRneYNaN&(FmaRneRes[`H_LEN-2:0] === {FmaRneY[`H_LEN-2:`H_NF],1'b1,FmaRneY[`H_NF-2:0]})) | (FmaRneYNaN&(FmaRneRes[`H_LEN-2:0] === {FmaRneY[`H_LEN-2:`H_NF],1'b1,FmaRneY[`H_NF-2:0]})) |
(FmaRneZNaN&(FmaRneRes[`H_LEN-2:0] === {FmaRneZ[`H_LEN-2:`H_NF],1'b1,FmaRneZ[`H_NF-2:0]}))); (FmaRneZNaN&(FmaRneRes[`H_LEN-2:0] === {FmaRneZ[`H_LEN-2:`H_NF],1'b1,FmaRneZ[`H_NF-2:0]})));
endcase endcase
case (FmaFmtVal) case (FmaFmtVal)
4'b11: FmaRzNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 4'b11: FmaRzNaNGood = (((`IEEE754==0)&FmaRzAnsNaN&(FmaRzRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRzAnsFlg[4]&(FmaRzRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (FmaRzAnsFlg[4]&(FmaRzRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRzXNaN&(FmaRzRes[`Q_LEN-2:0] === {FmaRzX[`Q_LEN-2:`Q_NF],1'b1,FmaRzX[`Q_NF-2:0]})) | (FmaRzXNaN&(FmaRzRes[`Q_LEN-2:0] === {FmaRzX[`Q_LEN-2:`Q_NF],1'b1,FmaRzX[`Q_NF-2:0]})) |
(FmaRzYNaN&(FmaRzRes[`Q_LEN-2:0] === {FmaRzY[`Q_LEN-2:`Q_NF],1'b1,FmaRzY[`Q_NF-2:0]})) | (FmaRzYNaN&(FmaRzRes[`Q_LEN-2:0] === {FmaRzY[`Q_LEN-2:`Q_NF],1'b1,FmaRzY[`Q_NF-2:0]})) |
(FmaRzZNaN&(FmaRzRes[`Q_LEN-2:0] === {FmaRzZ[`Q_LEN-2:`Q_NF],1'b1,FmaRzZ[`Q_NF-2:0]}))); (FmaRzZNaN&(FmaRzRes[`Q_LEN-2:0] === {FmaRzZ[`Q_LEN-2:`Q_NF],1'b1,FmaRzZ[`Q_NF-2:0]})));
4'b01: FmaRzNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 4'b01: FmaRzNaNGood = (((`IEEE754==0)&FmaRzAnsNaN&(FmaRzRes[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRzAnsFlg[4]&(FmaRzRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (FmaRzAnsFlg[4]&(FmaRzRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRzXNaN&(FmaRzRes[`D_LEN-2:0] === {FmaRzX[`D_LEN-2:`D_NF],1'b1,FmaRzX[`D_NF-2:0]})) | (FmaRzXNaN&(FmaRzRes[`D_LEN-2:0] === {FmaRzX[`D_LEN-2:`D_NF],1'b1,FmaRzX[`D_NF-2:0]})) |
(FmaRzYNaN&(FmaRzRes[`D_LEN-2:0] === {FmaRzY[`D_LEN-2:`D_NF],1'b1,FmaRzY[`D_NF-2:0]})) | (FmaRzYNaN&(FmaRzRes[`D_LEN-2:0] === {FmaRzY[`D_LEN-2:`D_NF],1'b1,FmaRzY[`D_NF-2:0]})) |
(FmaRzZNaN&(FmaRzRes[`D_LEN-2:0] === {FmaRzZ[`D_LEN-2:`D_NF],1'b1,FmaRzZ[`D_NF-2:0]}))); (FmaRzZNaN&(FmaRzRes[`D_LEN-2:0] === {FmaRzZ[`D_LEN-2:`D_NF],1'b1,FmaRzZ[`D_NF-2:0]})));
4'b00: FmaRzNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 4'b00: FmaRzNaNGood = (((`IEEE754==0)&FmaRzAnsNaN&(FmaRzRes[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRzAnsFlg[4]&(FmaRzRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (FmaRzAnsFlg[4]&(FmaRzRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRzXNaN&(FmaRzRes[`S_LEN-2:0] === {FmaRzX[`S_LEN-2:`S_NF],1'b1,FmaRzX[`S_NF-2:0]})) | (FmaRzXNaN&(FmaRzRes[`S_LEN-2:0] === {FmaRzX[`S_LEN-2:`S_NF],1'b1,FmaRzX[`S_NF-2:0]})) |
(FmaRzYNaN&(FmaRzRes[`S_LEN-2:0] === {FmaRzY[`S_LEN-2:`S_NF],1'b1,FmaRzY[`S_NF-2:0]})) | (FmaRzYNaN&(FmaRzRes[`S_LEN-2:0] === {FmaRzY[`S_LEN-2:`S_NF],1'b1,FmaRzY[`S_NF-2:0]})) |
(FmaRzZNaN&(FmaRzRes[`S_LEN-2:0] === {FmaRzZ[`S_LEN-2:`S_NF],1'b1,FmaRzZ[`S_NF-2:0]}))); (FmaRzZNaN&(FmaRzRes[`S_LEN-2:0] === {FmaRzZ[`S_LEN-2:`S_NF],1'b1,FmaRzZ[`S_NF-2:0]})));
4'b10: FmaRzNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 4'b10: FmaRzNaNGood = (((`IEEE754==0)&FmaRzAnsNaN&(FmaRzRes[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRzAnsFlg[4]&(FmaRzRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (FmaRzAnsFlg[4]&(FmaRzRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRzXNaN&(FmaRzRes[`H_LEN-2:0] === {FmaRzX[`H_LEN-2:`H_NF],1'b1,FmaRzX[`H_NF-2:0]})) | (FmaRzXNaN&(FmaRzRes[`H_LEN-2:0] === {FmaRzX[`H_LEN-2:`H_NF],1'b1,FmaRzX[`H_NF-2:0]})) |
(FmaRzYNaN&(FmaRzRes[`H_LEN-2:0] === {FmaRzY[`H_LEN-2:`H_NF],1'b1,FmaRzY[`H_NF-2:0]})) | (FmaRzYNaN&(FmaRzRes[`H_LEN-2:0] === {FmaRzY[`H_LEN-2:`H_NF],1'b1,FmaRzY[`H_NF-2:0]})) |
(FmaRzZNaN&(FmaRzRes[`H_LEN-2:0] === {FmaRzZ[`H_LEN-2:`H_NF],1'b1,FmaRzZ[`H_NF-2:0]}))); (FmaRzZNaN&(FmaRzRes[`H_LEN-2:0] === {FmaRzZ[`H_LEN-2:`H_NF],1'b1,FmaRzZ[`H_NF-2:0]})));
endcase endcase
case (FmaFmtVal) case (FmaFmtVal)
4'b11: FmaRuNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 4'b11: FmaRuNaNGood = (((`IEEE754==0)&FmaRuAnsNaN&(FmaRuRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRuAnsFlg[4]&(FmaRuRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (FmaRuAnsFlg[4]&(FmaRuRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRuXNaN&(FmaRuRes[`Q_LEN-2:0] === {FmaRuX[`Q_LEN-2:`Q_NF],1'b1,FmaRuX[`Q_NF-2:0]})) | (FmaRuXNaN&(FmaRuRes[`Q_LEN-2:0] === {FmaRuX[`Q_LEN-2:`Q_NF],1'b1,FmaRuX[`Q_NF-2:0]})) |
(FmaRuYNaN&(FmaRuRes[`Q_LEN-2:0] === {FmaRuY[`Q_LEN-2:`Q_NF],1'b1,FmaRuY[`Q_NF-2:0]})) | (FmaRuYNaN&(FmaRuRes[`Q_LEN-2:0] === {FmaRuY[`Q_LEN-2:`Q_NF],1'b1,FmaRuY[`Q_NF-2:0]})) |
(FmaRuZNaN&(FmaRuRes[`Q_LEN-2:0] === {FmaRuZ[`Q_LEN-2:`Q_NF],1'b1,FmaRuZ[`Q_NF-2:0]}))); (FmaRuZNaN&(FmaRuRes[`Q_LEN-2:0] === {FmaRuZ[`Q_LEN-2:`Q_NF],1'b1,FmaRuZ[`Q_NF-2:0]})));
4'b01: FmaRuNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 4'b01: FmaRuNaNGood = (((`IEEE754==0)&FmaRuAnsNaN&(FmaRuRes[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRuAnsFlg[4]&(FmaRuRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (FmaRuAnsFlg[4]&(FmaRuRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRuAnsFlg[4]&(FmaRuRes[`Q_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF{1'b0}}})) | (FmaRuAnsFlg[4]&(FmaRuRes[`Q_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF{1'b0}}})) |
(FmaRuXNaN&(FmaRuRes[`D_LEN-2:0] === {FmaRuX[`D_LEN-2:`D_NF],1'b1,FmaRuX[`D_NF-2:0]})) | (FmaRuXNaN&(FmaRuRes[`D_LEN-2:0] === {FmaRuX[`D_LEN-2:`D_NF],1'b1,FmaRuX[`D_NF-2:0]})) |
(FmaRuYNaN&(FmaRuRes[`D_LEN-2:0] === {FmaRuY[`D_LEN-2:`D_NF],1'b1,FmaRuY[`D_NF-2:0]})) | (FmaRuYNaN&(FmaRuRes[`D_LEN-2:0] === {FmaRuY[`D_LEN-2:`D_NF],1'b1,FmaRuY[`D_NF-2:0]})) |
(FmaRuZNaN&(FmaRuRes[`D_LEN-2:0] === {FmaRuZ[`D_LEN-2:`D_NF],1'b1,FmaRuZ[`D_NF-2:0]}))); (FmaRuZNaN&(FmaRuRes[`D_LEN-2:0] === {FmaRuZ[`D_LEN-2:`D_NF],1'b1,FmaRuZ[`D_NF-2:0]})));
4'b00: FmaRuNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 4'b00: FmaRuNaNGood = (((`IEEE754==0)&FmaRuAnsNaN&(FmaRuRes[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRuAnsFlg[4]&(FmaRuRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (FmaRuAnsFlg[4]&(FmaRuRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRuXNaN&(FmaRuRes[`S_LEN-2:0] === {FmaRuX[`S_LEN-2:`S_NF],1'b1,FmaRuX[`S_NF-2:0]})) | (FmaRuXNaN&(FmaRuRes[`S_LEN-2:0] === {FmaRuX[`S_LEN-2:`S_NF],1'b1,FmaRuX[`S_NF-2:0]})) |
(FmaRuYNaN&(FmaRuRes[`S_LEN-2:0] === {FmaRuY[`S_LEN-2:`S_NF],1'b1,FmaRuY[`S_NF-2:0]})) | (FmaRuYNaN&(FmaRuRes[`S_LEN-2:0] === {FmaRuY[`S_LEN-2:`S_NF],1'b1,FmaRuY[`S_NF-2:0]})) |
(FmaRuZNaN&(FmaRuRes[`S_LEN-2:0] === {FmaRuZ[`S_LEN-2:`S_NF],1'b1,FmaRuZ[`S_NF-2:0]}))); (FmaRuZNaN&(FmaRuRes[`S_LEN-2:0] === {FmaRuZ[`S_LEN-2:`S_NF],1'b1,FmaRuZ[`S_NF-2:0]})));
4'b10: FmaRuNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 4'b10: FmaRuNaNGood = (((`IEEE754==0)&FmaRuAnsNaN&(FmaRuRes[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRuAnsFlg[4]&(FmaRuRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (FmaRuAnsFlg[4]&(FmaRuRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRuXNaN&(FmaRuRes[`H_LEN-2:0] === {FmaRuX[`H_LEN-2:`H_NF],1'b1,FmaRuX[`H_NF-2:0]})) | (FmaRuXNaN&(FmaRuRes[`H_LEN-2:0] === {FmaRuX[`H_LEN-2:`H_NF],1'b1,FmaRuX[`H_NF-2:0]})) |
(FmaRuYNaN&(FmaRuRes[`H_LEN-2:0] === {FmaRuY[`H_LEN-2:`H_NF],1'b1,FmaRuY[`H_NF-2:0]})) | (FmaRuYNaN&(FmaRuRes[`H_LEN-2:0] === {FmaRuY[`H_LEN-2:`H_NF],1'b1,FmaRuY[`H_NF-2:0]})) |
(FmaRuZNaN&(FmaRuRes[`H_LEN-2:0] === {FmaRuZ[`H_LEN-2:`H_NF],1'b1,FmaRuZ[`H_NF-2:0]}))); (FmaRuZNaN&(FmaRuRes[`H_LEN-2:0] === {FmaRuZ[`H_LEN-2:`H_NF],1'b1,FmaRuZ[`H_NF-2:0]})));
endcase endcase
case (FmaFmtVal) case (FmaFmtVal)
4'b11: FmaRdNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 4'b11: FmaRdNaNGood = (((`IEEE754==0)&FmaRdAnsNaN&(FmaRdRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRdAnsFlg[4]&(FmaRdRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (FmaRdAnsFlg[4]&(FmaRdRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRdXNaN&(FmaRdRes[`Q_LEN-2:0] === {FmaRdX[`Q_LEN-2:`Q_NF],1'b1,FmaRdX[`Q_NF-2:0]})) | (FmaRdXNaN&(FmaRdRes[`Q_LEN-2:0] === {FmaRdX[`Q_LEN-2:`Q_NF],1'b1,FmaRdX[`Q_NF-2:0]})) |
(FmaRdYNaN&(FmaRdRes[`Q_LEN-2:0] === {FmaRdY[`Q_LEN-2:`Q_NF],1'b1,FmaRdY[`Q_NF-2:0]})) | (FmaRdYNaN&(FmaRdRes[`Q_LEN-2:0] === {FmaRdY[`Q_LEN-2:`Q_NF],1'b1,FmaRdY[`Q_NF-2:0]})) |
(FmaRdZNaN&(FmaRdRes[`Q_LEN-2:0] === {FmaRdZ[`Q_LEN-2:`Q_NF],1'b1,FmaRdZ[`Q_NF-2:0]}))); (FmaRdZNaN&(FmaRdRes[`Q_LEN-2:0] === {FmaRdZ[`Q_LEN-2:`Q_NF],1'b1,FmaRdZ[`Q_NF-2:0]})));
4'b01: FmaRdNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 4'b01: FmaRdNaNGood = (((`IEEE754==0)&FmaRdAnsNaN&(FmaRdRes[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRdAnsFlg[4]&(FmaRdRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (FmaRdAnsFlg[4]&(FmaRdRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRdXNaN&(FmaRdRes[`D_LEN-2:0] === {FmaRdX[`D_LEN-2:`D_NF],1'b1,FmaRdX[`D_NF-2:0]})) | (FmaRdXNaN&(FmaRdRes[`D_LEN-2:0] === {FmaRdX[`D_LEN-2:`D_NF],1'b1,FmaRdX[`D_NF-2:0]})) |
(FmaRdYNaN&(FmaRdRes[`D_LEN-2:0] === {FmaRdY[`D_LEN-2:`D_NF],1'b1,FmaRdY[`D_NF-2:0]})) | (FmaRdYNaN&(FmaRdRes[`D_LEN-2:0] === {FmaRdY[`D_LEN-2:`D_NF],1'b1,FmaRdY[`D_NF-2:0]})) |
(FmaRdZNaN&(FmaRdRes[`D_LEN-2:0] === {FmaRdZ[`D_LEN-2:`D_NF],1'b1,FmaRdZ[`D_NF-2:0]}))); (FmaRdZNaN&(FmaRdRes[`D_LEN-2:0] === {FmaRdZ[`D_LEN-2:`D_NF],1'b1,FmaRdZ[`D_NF-2:0]})));
4'b00: FmaRdNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 4'b00: FmaRdNaNGood = (((`IEEE754==0)&FmaRdAnsNaN&(FmaRdRes[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRdAnsFlg[4]&(FmaRdRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (FmaRdAnsFlg[4]&(FmaRdRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRdXNaN&(FmaRdRes[`S_LEN-2:0] === {FmaRdX[`S_LEN-2:`S_NF],1'b1,FmaRdX[`S_NF-2:0]})) | (FmaRdXNaN&(FmaRdRes[`S_LEN-2:0] === {FmaRdX[`S_LEN-2:`S_NF],1'b1,FmaRdX[`S_NF-2:0]})) |
(FmaRdYNaN&(FmaRdRes[`S_LEN-2:0] === {FmaRdY[`S_LEN-2:`S_NF],1'b1,FmaRdY[`S_NF-2:0]})) | (FmaRdYNaN&(FmaRdRes[`S_LEN-2:0] === {FmaRdY[`S_LEN-2:`S_NF],1'b1,FmaRdY[`S_NF-2:0]})) |
(FmaRdZNaN&(FmaRdRes[`S_LEN-2:0] === {FmaRdZ[`S_LEN-2:`S_NF],1'b1,FmaRdZ[`S_NF-2:0]}))); (FmaRdZNaN&(FmaRdRes[`S_LEN-2:0] === {FmaRdZ[`S_LEN-2:`S_NF],1'b1,FmaRdZ[`S_NF-2:0]})));
4'b10: FmaRdNaNGood = (((`IEEE754==0)&(FmaRneRes === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 4'b10: FmaRdNaNGood = (((`IEEE754==0)&FmaRdAnsNaN&(FmaRdRes[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRdAnsFlg[4]&(FmaRdRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (FmaRdAnsFlg[4]&(FmaRdRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRdXNaN&(FmaRdRes[`H_LEN-2:0] === {FmaRdX[`H_LEN-2:`H_NF],1'b1,FmaRdX[`H_NF-2:0]})) | (FmaRdXNaN&(FmaRdRes[`H_LEN-2:0] === {FmaRdX[`H_LEN-2:`H_NF],1'b1,FmaRdX[`H_NF-2:0]})) |
(FmaRdYNaN&(FmaRdRes[`H_LEN-2:0] === {FmaRdY[`H_LEN-2:`H_NF],1'b1,FmaRdY[`H_NF-2:0]})) | (FmaRdYNaN&(FmaRdRes[`H_LEN-2:0] === {FmaRdY[`H_LEN-2:`H_NF],1'b1,FmaRdY[`H_NF-2:0]})) |
(FmaRdZNaN&(FmaRdRes[`H_LEN-2:0] === {FmaRdZ[`H_LEN-2:`H_NF],1'b1,FmaRdZ[`H_NF-2:0]}))); (FmaRdZNaN&(FmaRdRes[`H_LEN-2:0] === {FmaRdZ[`H_LEN-2:`H_NF],1'b1,FmaRdZ[`H_NF-2:0]})));
endcase endcase
case (FmaFmtVal) case (FmaFmtVal)
4'b11: FmaRnmNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 4'b11: FmaRnmNaNGood =(((`IEEE754==0)&FmaRnmAnsNaN&(FmaRnmRes === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRnmAnsFlg[4]&(FmaRnmRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (FmaRnmAnsFlg[4]&(FmaRnmRes[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(FmaRnmXNaN&(FmaRnmRes[`Q_LEN-2:0] === {FmaRnmX[`Q_LEN-2:`Q_NF],1'b1,FmaRnmX[`Q_NF-2:0]})) | (FmaRnmXNaN&(FmaRnmRes[`Q_LEN-2:0] === {FmaRnmX[`Q_LEN-2:`Q_NF],1'b1,FmaRnmX[`Q_NF-2:0]})) |
(FmaRnmYNaN&(FmaRnmRes[`Q_LEN-2:0] === {FmaRnmY[`Q_LEN-2:`Q_NF],1'b1,FmaRnmY[`Q_NF-2:0]})) | (FmaRnmYNaN&(FmaRnmRes[`Q_LEN-2:0] === {FmaRnmY[`Q_LEN-2:`Q_NF],1'b1,FmaRnmY[`Q_NF-2:0]})) |
(FmaRnmZNaN&(FmaRnmRes[`Q_LEN-2:0] === {FmaRnmZ[`Q_LEN-2:`Q_NF],1'b1,FmaRnmZ[`Q_NF-2:0]}))); (FmaRnmZNaN&(FmaRnmRes[`Q_LEN-2:0] === {FmaRnmZ[`Q_LEN-2:`Q_NF],1'b1,FmaRnmZ[`Q_NF-2:0]})));
4'b01: FmaRnmNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 4'b01: FmaRnmNaNGood =(((`IEEE754==0)&FmaRnmAnsNaN&(FmaRnmRes[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRnmAnsFlg[4]&(FmaRnmRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (FmaRnmAnsFlg[4]&(FmaRnmRes[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(FmaRnmXNaN&(FmaRnmRes[`D_LEN-2:0] === {FmaRnmX[`D_LEN-2:`D_NF],1'b1,FmaRnmX[`D_NF-2:0]})) | (FmaRnmXNaN&(FmaRnmRes[`D_LEN-2:0] === {FmaRnmX[`D_LEN-2:`D_NF],1'b1,FmaRnmX[`D_NF-2:0]})) |
(FmaRnmYNaN&(FmaRnmRes[`D_LEN-2:0] === {FmaRnmY[`D_LEN-2:`D_NF],1'b1,FmaRnmY[`D_NF-2:0]})) | (FmaRnmYNaN&(FmaRnmRes[`D_LEN-2:0] === {FmaRnmY[`D_LEN-2:`D_NF],1'b1,FmaRnmY[`D_NF-2:0]})) |
(FmaRnmZNaN&(FmaRnmRes[`D_LEN-2:0] === {FmaRnmZ[`D_LEN-2:`D_NF],1'b1,FmaRnmZ[`D_NF-2:0]}))); (FmaRnmZNaN&(FmaRnmRes[`D_LEN-2:0] === {FmaRnmZ[`D_LEN-2:`D_NF],1'b1,FmaRnmZ[`D_NF-2:0]})));
4'b00: FmaRnmNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 4'b00: FmaRnmNaNGood =(((`IEEE754==0)&FmaRnmAnsNaN&(FmaRnmRes[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRnmAnsFlg[4]&(FmaRnmRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (FmaRnmAnsFlg[4]&(FmaRnmRes[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(FmaRnmXNaN&(FmaRnmRes[`S_LEN-2:0] === {FmaRnmX[`S_LEN-2:`S_NF],1'b1,FmaRnmX[`S_NF-2:0]})) | (FmaRnmXNaN&(FmaRnmRes[`S_LEN-2:0] === {FmaRnmX[`S_LEN-2:`S_NF],1'b1,FmaRnmX[`S_NF-2:0]})) |
(FmaRnmYNaN&(FmaRnmRes[`S_LEN-2:0] === {FmaRnmY[`S_LEN-2:`S_NF],1'b1,FmaRnmY[`S_NF-2:0]})) | (FmaRnmYNaN&(FmaRnmRes[`S_LEN-2:0] === {FmaRnmY[`S_LEN-2:`S_NF],1'b1,FmaRnmY[`S_NF-2:0]})) |
(FmaRnmZNaN&(FmaRnmRes[`S_LEN-2:0] === {FmaRnmZ[`S_LEN-2:`S_NF],1'b1,FmaRnmZ[`S_NF-2:0]}))); (FmaRnmZNaN&(FmaRnmRes[`S_LEN-2:0] === {FmaRnmZ[`S_LEN-2:`S_NF],1'b1,FmaRnmZ[`S_NF-2:0]})));
4'b10: FmaRnmNaNGood =(((`IEEE754==0)&(FmaRneRes === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 4'b10: FmaRnmNaNGood =(((`IEEE754==0)&FmaRnmAnsNaN&(FmaRnmRes[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRnmAnsFlg[4]&(FmaRnmRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (FmaRnmAnsFlg[4]&(FmaRnmRes[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(FmaRnmXNaN&(FmaRnmRes[`H_LEN-2:0] === {FmaRnmX[`H_LEN-2:`H_NF],1'b1,FmaRnmX[`H_NF-2:0]})) | (FmaRnmXNaN&(FmaRnmRes[`H_LEN-2:0] === {FmaRnmX[`H_LEN-2:`H_NF],1'b1,FmaRnmX[`H_NF-2:0]})) |
(FmaRnmYNaN&(FmaRnmRes[`H_LEN-2:0] === {FmaRnmY[`H_LEN-2:`H_NF],1'b1,FmaRnmY[`H_NF-2:0]})) | (FmaRnmYNaN&(FmaRnmRes[`H_LEN-2:0] === {FmaRnmY[`H_LEN-2:`H_NF],1'b1,FmaRnmY[`H_NF-2:0]})) |
@ -1140,22 +1140,22 @@ end
endcase endcase
if (UnitVal !== `CVTFPUNIT & UnitVal !== `CVTINTUNIT) if (UnitVal !== `CVTFPUNIT & UnitVal !== `CVTINTUNIT)
case (FmtVal) case (FmtVal)
4'b11: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 4'b11: NaNGood = (((`IEEE754==0)&AnsNaN&(Res === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(XNaN&(Res[`Q_LEN-2:0] === {X[`Q_LEN-2:`Q_NF],1'b1,X[`Q_NF-2:0]})) | (XNaN&(Res[`Q_LEN-2:0] === {X[`Q_LEN-2:`Q_NF],1'b1,X[`Q_NF-2:0]})) |
(YNaN&(Res[`Q_LEN-2:0] === {Y[`Q_LEN-2:`Q_NF],1'b1,Y[`Q_NF-2:0]})) | (YNaN&(Res[`Q_LEN-2:0] === {Y[`Q_LEN-2:`Q_NF],1'b1,Y[`Q_NF-2:0]})) |
(ZNaN&(Res[`Q_LEN-2:0] === {Z[`Q_LEN-2:`Q_NF],1'b1,Z[`Q_NF-2:0]}))); (ZNaN&(Res[`Q_LEN-2:0] === {Z[`Q_LEN-2:`Q_NF],1'b1,Z[`Q_NF-2:0]})));
4'b01: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 4'b01: NaNGood = (((`IEEE754==0)&AnsNaN&(Res[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(XNaN&(Res[`D_LEN-2:0] === {X[`D_LEN-2:`D_NF],1'b1,X[`D_NF-2:0]})) | (XNaN&(Res[`D_LEN-2:0] === {X[`D_LEN-2:`D_NF],1'b1,X[`D_NF-2:0]})) |
(YNaN&(Res[`D_LEN-2:0] === {Y[`D_LEN-2:`D_NF],1'b1,Y[`D_NF-2:0]})) | (YNaN&(Res[`D_LEN-2:0] === {Y[`D_LEN-2:`D_NF],1'b1,Y[`D_NF-2:0]})) |
(ZNaN&(Res[`D_LEN-2:0] === {Z[`D_LEN-2:`D_NF],1'b1,Z[`D_NF-2:0]}))); (ZNaN&(Res[`D_LEN-2:0] === {Z[`D_LEN-2:`D_NF],1'b1,Z[`D_NF-2:0]})));
4'b00: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 4'b00: NaNGood = (((`IEEE754==0)&AnsNaN&(Res[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(XNaN&(Res[`S_LEN-2:0] === {X[`S_LEN-2:`S_NF],1'b1,X[`S_NF-2:0]})) | (XNaN&(Res[`S_LEN-2:0] === {X[`S_LEN-2:`S_NF],1'b1,X[`S_NF-2:0]})) |
(YNaN&(Res[`S_LEN-2:0] === {Y[`S_LEN-2:`S_NF],1'b1,Y[`S_NF-2:0]})) | (YNaN&(Res[`S_LEN-2:0] === {Y[`S_LEN-2:`S_NF],1'b1,Y[`S_NF-2:0]})) |
(ZNaN&(Res[`S_LEN-2:0] === {Z[`S_LEN-2:`S_NF],1'b1,Z[`S_NF-2:0]}))); (ZNaN&(Res[`S_LEN-2:0] === {Z[`S_LEN-2:`S_NF],1'b1,Z[`S_NF-2:0]})));
4'b10: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 4'b10: NaNGood = (((`IEEE754==0)&AnsNaN&(Res[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(XNaN&(Res[`H_LEN-2:0] === {X[`H_LEN-2:`H_NF],1'b1,X[`H_NF-2:0]})) | (XNaN&(Res[`H_LEN-2:0] === {X[`H_LEN-2:`H_NF],1'b1,X[`H_NF-2:0]})) |
(YNaN&(Res[`H_LEN-2:0] === {Y[`H_LEN-2:`H_NF],1'b1,Y[`H_NF-2:0]})) | (YNaN&(Res[`H_LEN-2:0] === {Y[`H_LEN-2:`H_NF],1'b1,Y[`H_NF-2:0]})) |
@ -1163,22 +1163,22 @@ end
endcase endcase
else if (UnitVal === `CVTFPUNIT) // if converting from floating point to floating point OpCtrl contains the final FP format else if (UnitVal === `CVTFPUNIT) // if converting from floating point to floating point OpCtrl contains the final FP format
case (OpCtrlVal[1:0]) case (OpCtrlVal[1:0])
2'b11: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | 2'b11: NaNGood = (((`IEEE754==0)&AnsNaN&(Res === {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`Q_LEN-2:0] === {{`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}})) |
(AnsNaN&(Res[`Q_LEN-2:0] === Ans[`Q_LEN-2:0])) | (AnsNaN&(Res[`Q_LEN-2:0] === Ans[`Q_LEN-2:0])) |
(XNaN&(Res[`Q_LEN-2:0] === {X[`Q_LEN-2:`Q_NF],1'b1,X[`Q_NF-2:0]})) | (XNaN&(Res[`Q_LEN-2:0] === {X[`Q_LEN-2:`Q_NF],1'b1,X[`Q_NF-2:0]})) |
(YNaN&(Res[`Q_LEN-2:0] === {Y[`Q_LEN-2:`Q_NF],1'b1,Y[`Q_NF-2:0]}))); (YNaN&(Res[`Q_LEN-2:0] === {Y[`Q_LEN-2:`Q_NF],1'b1,Y[`Q_NF-2:0]})));
2'b01: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | 2'b01: NaNGood = (((`IEEE754==0)&AnsNaN&(Res[`D_LEN-1:0] === {1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`D_LEN-2:0] === {{`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}})) |
(AnsNaN&(Res[`D_LEN-2:0] === Ans[`D_LEN-2:0])) | (AnsNaN&(Res[`D_LEN-2:0] === Ans[`D_LEN-2:0])) |
(XNaN&(Res[`D_LEN-2:0] === {X[`D_LEN-2:`D_NF],1'b1,X[`D_NF-2:0]})) | (XNaN&(Res[`D_LEN-2:0] === {X[`D_LEN-2:`D_NF],1'b1,X[`D_NF-2:0]})) |
(YNaN&(Res[`D_LEN-2:0] === {Y[`D_LEN-2:`D_NF],1'b1,Y[`D_NF-2:0]}))); (YNaN&(Res[`D_LEN-2:0] === {Y[`D_LEN-2:`D_NF],1'b1,Y[`D_NF-2:0]})));
2'b00: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | 2'b00: NaNGood = (((`IEEE754==0)&AnsNaN&(Res[`S_LEN-1:0] === {1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`S_LEN-2:0] === {{`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}})) |
(AnsNaN&(Res[`S_LEN-2:0] === Ans[`S_LEN-2:0])) | (AnsNaN&(Res[`S_LEN-2:0] === Ans[`S_LEN-2:0])) |
(XNaN&(Res[`S_LEN-2:0] === {X[`S_LEN-2:`S_NF],1'b1,X[`S_NF-2:0]})) | (XNaN&(Res[`S_LEN-2:0] === {X[`S_LEN-2:`S_NF],1'b1,X[`S_NF-2:0]})) |
(YNaN&(Res[`S_LEN-2:0] === {Y[`S_LEN-2:`S_NF],1'b1,Y[`S_NF-2:0]}))); (YNaN&(Res[`S_LEN-2:0] === {Y[`S_LEN-2:`S_NF],1'b1,Y[`S_NF-2:0]})));
2'b10: NaNGood = (((`IEEE754==0)&(Res === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | 2'b10: NaNGood = (((`IEEE754==0)&AnsNaN&(Res[`H_LEN-1:0] === {1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(AnsFlg[4]&(Res[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) | (AnsFlg[4]&(Res[`H_LEN-2:0] === {{`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}})) |
(AnsNaN&(Res[`H_LEN-2:0] === Ans[`H_LEN-2:0])) | (AnsNaN&(Res[`H_LEN-2:0] === Ans[`H_LEN-2:0])) |
(XNaN&(Res[`H_LEN-2:0] === {X[`H_LEN-2:`H_NF],1'b1,X[`H_NF-2:0]})) | (XNaN&(Res[`H_LEN-2:0] === {X[`H_LEN-2:`H_NF],1'b1,X[`H_NF-2:0]})) |
@ -1452,14 +1452,14 @@ module readvectors (
case (Fmt) case (Fmt)
2'b11: begin // quad 2'b11: begin // quad
X = TestVector[8+3*(`Q_LEN)-1:8+2*(`Q_LEN)]; X = TestVector[8+3*(`Q_LEN)-1:8+2*(`Q_LEN)];
if(OpCtrl === `MUL_OPCTRL) Y = TestVector[8+2*(`Q_LEN)-1:8+(`Q_LEN)]; else Y = {2'b0, {`Q_NE-1{1'b1}}, `Q_NF'h0}; if(OpCtrl === `MUL_OPCTRL) Y = TestVector[8+2*(`Q_LEN)-1:8+(`Q_LEN)]; else Y = {2'b0, {`Q_NE-1{1'b1}}, (`Q_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = 0; else Z = TestVector[8+2*(`Q_LEN)-1:8+(`Q_LEN)]; if(OpCtrl === `MUL_OPCTRL) Z = 0; else Z = TestVector[8+2*(`Q_LEN)-1:8+(`Q_LEN)];
Ans = TestVector[8+(`Q_LEN-1):8]; Ans = TestVector[8+(`Q_LEN-1):8];
end end
2'b01: begin // double 2'b01: begin // double
X = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+3*(`D_LEN)-1:8+2*(`D_LEN)]}; X = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+3*(`D_LEN)-1:8+2*(`D_LEN)]};
if(OpCtrl === `MUL_OPCTRL) Y = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+2*(`D_LEN)-1:8+(`D_LEN)]}; if(OpCtrl === `MUL_OPCTRL) Y = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+2*(`D_LEN)-1:8+(`D_LEN)]};
else Y = {{`FLEN-`D_LEN{1'b1}}, 2'b0, {`D_NE-1{1'b1}}, `D_NF'h0}; else Y = {{`FLEN-`D_LEN{1'b1}}, 2'b0, {`D_NE-1{1'b1}}, (`D_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = {{`FLEN-`D_LEN{1'b1}}, {`D_LEN{1'b0}}}; if(OpCtrl === `MUL_OPCTRL) Z = {{`FLEN-`D_LEN{1'b1}}, {`D_LEN{1'b0}}};
else Z = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+2*(`D_LEN)-1:8+(`D_LEN)]}; else Z = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+2*(`D_LEN)-1:8+(`D_LEN)]};
Ans = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+(`D_LEN-1):8]}; Ans = {{`FLEN-`D_LEN{1'b1}}, TestVector[8+(`D_LEN-1):8]};
@ -1467,7 +1467,7 @@ module readvectors (
2'b00: begin // single 2'b00: begin // single
X = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+3*(`S_LEN)-1:8+2*(`S_LEN)]}; X = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+3*(`S_LEN)-1:8+2*(`S_LEN)]};
if(OpCtrl === `MUL_OPCTRL) Y = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+2*(`S_LEN)-1:8+(`S_LEN)]}; if(OpCtrl === `MUL_OPCTRL) Y = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+2*(`S_LEN)-1:8+(`S_LEN)]};
else Y = {{`FLEN-`S_LEN{1'b1}}, 2'b0, {`S_NE-1{1'b1}}, `S_NF'h0}; else Y = {{`FLEN-`S_LEN{1'b1}}, 2'b0, {`S_NE-1{1'b1}}, (`S_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = {{`FLEN-`S_LEN{1'b1}}, {`S_LEN{1'b0}}}; if(OpCtrl === `MUL_OPCTRL) Z = {{`FLEN-`S_LEN{1'b1}}, {`S_LEN{1'b0}}};
else Z = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+2*(`S_LEN)-1:8+(`S_LEN)]}; else Z = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+2*(`S_LEN)-1:8+(`S_LEN)]};
Ans = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+(`S_LEN-1):8]}; Ans = {{`FLEN-`S_LEN{1'b1}}, TestVector[8+(`S_LEN-1):8]};
@ -1475,7 +1475,7 @@ module readvectors (
2'b10: begin // half 2'b10: begin // half
X = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+3*(`H_LEN)-1:8+2*(`H_LEN)]}; X = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+3*(`H_LEN)-1:8+2*(`H_LEN)]};
if(OpCtrl === `MUL_OPCTRL) Y = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+2*(`H_LEN)-1:8+(`H_LEN)]}; if(OpCtrl === `MUL_OPCTRL) Y = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+2*(`H_LEN)-1:8+(`H_LEN)]};
else Y = {{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, `H_NF'h0}; else Y = {{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, (`H_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = {{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}}; if(OpCtrl === `MUL_OPCTRL) Z = {{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}};
else Z = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+2*(`H_LEN)-1:8+(`H_LEN)]}; else Z = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+2*(`H_LEN)-1:8+(`H_LEN)]};
Ans = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+(`H_LEN-1):8]}; Ans = {{`FLEN-`H_LEN{1'b1}}, TestVector[8+(`H_LEN-1):8]};