Remove old icache

This commit is contained in:
Jarred Allen 2021-03-25 15:46:35 -04:00
parent 5f4feb0ff1
commit 32829bf7a1

View File

@ -250,114 +250,3 @@ module icachecontroller #(parameter LINESIZE = 256) (
assign FaultStall = FetchState | ~ICacheMemReadValid;
end
endmodule
module oldicache(
// Basic pipeline stuff
input logic clk, reset,
input logic StallF, StallD,
input logic FlushD,
// Upper bits of physical address for PC
input logic [`XLEN-1:12] UpperPCPF,
// Lower 12 bits of virtual PC address, since it's faster this way
input logic [11:0] LowerPCF,
// Data read in from the ebu unit
input logic [`XLEN-1:0] InstrInF,
// Read requested from the ebu unit
output logic [`XLEN-1:0] InstrPAdrF,
output logic InstrReadF,
// High if the instruction currently in the fetch stage is compressed
output logic CompressedF,
// High if the icache is requesting a stall
output logic ICacheStallF,
// The raw (not decompressed) instruction that was requested
// If the next instruction is compressed, the upper 16 bits may be anything
output logic [31:0] InstrRawD
);
logic DelayF, DelaySideF, FlushDLastCyclen, DelayD;
logic [1:0] InstrDMuxChoice;
logic [15:0] MisalignedHalfInstrF, MisalignedHalfInstrD;
logic [31:0] InstrF, AlignedInstrD;
// Buffer the last read, for ease of accessing it again
logic LastReadDataValidF;
logic [`XLEN-1:0] LastReadDataF, LastReadAdrF, InDataF;
// instruction for NOP
logic [31:0] nop = 32'h00000013;
// Temporary change to bridge the new interface to old behaviors
logic [`XLEN-1:0] PCPF;
assign PCPF = {UpperPCPF, LowerPCF};
// This flop doesn't stall if StallF is high because we should output a nop
// when FlushD happens, even if the pipeline is also stalled.
flopr #(1) flushDLastCycleFlop(clk, reset, ~FlushD & (FlushDLastCyclen | ~StallF), FlushDLastCyclen);
flopenr #(1) delayDFlop(clk, reset, ~StallF, DelayF & ~CompressedF, DelayD);
flopenrc#(1) delayStateFlop(clk, reset, FlushD, ~StallF, DelayF & ~DelaySideF, DelaySideF);
// This flop stores the first half of a misaligned instruction while waiting for the other half
flopenr #(16) halfInstrFlop(clk, reset, DelayF & ~StallF, MisalignedHalfInstrF, MisalignedHalfInstrD);
// This flop is here to simulate pulling data out of the cache, which is edge-triggered
flopenr #(32) instrFlop(clk, reset, ~StallF, InstrF, AlignedInstrD);
// These flops cache the previous read, to accelerate things
flopenr #(`XLEN) lastReadDataFlop(clk, reset, InstrReadF & ~StallF, InstrInF, LastReadDataF);
flopenr #(1) lastReadDataVFlop(clk, reset, InstrReadF & ~StallF, 1'b1, LastReadDataValidF);
flopenr #(`XLEN) lastReadAdrFlop(clk, reset, InstrReadF & ~StallF, InstrPAdrF, LastReadAdrF);
// Decide which address needs to be fetched and sent out over InstrPAdrF
// If the requested address fits inside one read from memory, we fetch that
// address, adjusted to the bit width. Otherwise, we request the lower word
// and then the upper word, in that order.
generate
if (`XLEN == 32) begin
assign InstrPAdrF = PCPF[1] ? ((DelaySideF & ~CompressedF) ? {PCPF[31:2], 2'b00} : {PCPF[31:2], 2'b00}) : PCPF;
end else begin
assign InstrPAdrF = PCPF[2] ? (PCPF[1] ? ((DelaySideF & ~CompressedF) ? {PCPF[63:3]+1, 3'b000} : {PCPF[63:3], 3'b000}) : {PCPF[63:3], 3'b000}) : {PCPF[63:3], 3'b000};
end
endgenerate
// Read from memory if we don't have the address we want
always_comb if (LastReadDataValidF & (InstrPAdrF == LastReadAdrF)) begin
assign InstrReadF = 0;
end else begin
assign InstrReadF = 1;
end
// Pick from the memory input or from the previous read, as appropriate
mux2 #(`XLEN) inDataMux(LastReadDataF, InstrInF, InstrReadF, InDataF);
// If the instruction fits in one memory read, then we put the right bits
// into InstrF. Otherwise, we activate DelayF to signal the rest of the
// machinery to swizzle bits.
generate
if (`XLEN == 32) begin
assign InstrF = PCPF[1] ? {16'b0, InDataF[31:16]} : InDataF;
assign DelayF = PCPF[1];
assign MisalignedHalfInstrF = InDataF[31:16];
end else begin
assign InstrF = PCPF[2] ? (PCPF[1] ? {16'b0, InDataF[63:48]} : InDataF[63:32]) : (PCPF[1] ? InDataF[47:16] : InDataF[31:0]);
assign DelayF = PCPF[1] && PCPF[2];
assign MisalignedHalfInstrF = InDataF[63:48];
end
endgenerate
// We will likely need to stall later, but stalls are handled by the rest of the pipeline for now
assign ICacheStallF = 0;
// Detect if the instruction is compressed
assign CompressedF = InstrF[1:0] != 2'b11;
// Pick the correct output, depending on whether we have to assemble this
// instruction from two reads or not.
// Output the requested instruction (we don't need to worry if the read is
// incomplete, since the pipeline stalls for us when it isn't), or a NOP for
// the cycle when the first of two reads comes in.
always_comb if (~FlushDLastCyclen) begin
assign InstrDMuxChoice = 2'b10;
end else if (DelayD & (MisalignedHalfInstrD[1:0] != 2'b11)) begin
assign InstrDMuxChoice = 2'b11;
end else begin
assign InstrDMuxChoice = {1'b0, DelayD};
end
mux4 #(32) instrDMux (AlignedInstrD, {InstrInF[15:0], MisalignedHalfInstrD}, nop, {16'b0, MisalignedHalfInstrD}, InstrDMuxChoice, InstrRawD);
endmodule