cvw/pipelined/src/fpu/otfc.sv

178 lines
5.5 KiB
Systemverilog
Raw Normal View History

2022-07-15 21:42:45 +00:00
///////////////////////////////////////////
// otfc.sv
//
// Written: me@KatherineParry.com, cturek@hmc.edu
// Modified:7/14/2022
//
// Purpose: On the fly conversion
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module otfc2 (
input logic qp, qz,
2022-07-22 22:02:04 +00:00
input logic [`DIVb:0] Q, QM,
output logic [`DIVb:0] QNext, QMNext
2022-07-15 21:42:45 +00:00
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
// Use this otfc for division only.
2022-07-22 22:02:04 +00:00
logic [`DIVb-1:0] QR, QMR;
2022-07-15 21:42:45 +00:00
2022-07-22 22:02:04 +00:00
assign QR = Q[`DIVb-1:0];
assign QMR = QM[`DIVb-1:0]; // Shifted Q and QM
2022-07-15 21:42:45 +00:00
always_comb begin
if (qp) begin
QNext = {QR, 1'b1};
QMNext = {QR, 1'b0};
end else if (qz) begin
QNext = {QR, 1'b0};
QMNext = {QMR, 1'b1};
end else begin // If qp and qz are not true, then qn is
QNext = {QMR, 1'b1};
QMNext = {QMR, 1'b0};
end
end
endmodule
///////////////////////////////
// Square Root OTFC, Radix 2 //
///////////////////////////////
module sotfc2(
input logic sp, sz,
input logic [`DIVb-1:0] C,
input logic [`DIVb:0] S, SM,
output logic [`DIVb:0] SNext, SMNext
);
// The on-the-fly converter transfers the square root
// bits to the quotient as they come.
// Use this otfc for division and square root.
logic [`DIVb:0] CExt;
assign CExt = {1'b1, C};
always_comb begin
if (sp) begin
SNext = S | (CExt & ~(CExt << 1));
SMNext = S;
end else if (sz) begin
SNext = S;
SMNext = SM | (CExt & ~(CExt << 1));
end else begin // If sp and sz are not true, then sn is
SNext = SM | (CExt & ~(CExt << 1));
SMNext = SM;
end
end
endmodule
2022-07-15 21:42:45 +00:00
module otfc4 (
input logic [3:0] q,
2022-07-22 22:02:04 +00:00
input logic [`DIVb:0] Q, QM,
output logic [`DIVb:0] QNext, QMNext
2022-07-15 21:42:45 +00:00
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
//
// This code follows the psuedocode presented in the
// floating point chapter of the book. Right now,
// it is written for Radix-4 division.
//
// QM is Q-1. It allows us to write negative bits
// without using a costly CPA.
// QR and QMR are the shifted versions of Q and QM.
// They are treated as [N-1:r] size signals, and
// discard the r most significant bits of Q and QM.
2022-07-22 22:02:04 +00:00
logic [`DIVb-2:0] QR, QMR;
2022-07-15 21:42:45 +00:00
// shift Q (quotent) and QM (quotent-1)
// if q = 2 Q = {Q, 10} QM = {Q, 01}
// else if q = 1 Q = {Q, 01} QM = {Q, 00}
// else if q = 0 Q = {Q, 00} QM = {QM, 11}
// else if q = -1 Q = {QM, 11} QM = {QM, 10}
// else if q = -2 Q = {QM, 10} QM = {QM, 01}
2022-07-22 22:02:04 +00:00
assign QR = Q[`DIVb-2:0];
assign QMR = QM[`DIVb-2:0]; // Shifted Q and QM
2022-07-15 21:42:45 +00:00
always_comb begin
if (q[3]) begin // +2
QNext = {QR, 2'b10};
QMNext = {QR, 2'b01};
end else if (q[2]) begin // +1
QNext = {QR, 2'b01};
QMNext = {QR, 2'b00};
end else if (q[1]) begin // -1
QNext = {QMR, 2'b11};
QMNext = {QMR, 2'b10};
end else if (q[0]) begin // -2
QNext = {QMR, 2'b10};
QMNext = {QMR, 2'b01};
end else begin // 0
QNext = {QR, 2'b00};
QMNext = {QMR, 2'b11};
end
end
// Final Qmeint is in the range [.5, 2)
2022-07-15 21:42:45 +00:00
endmodule
///////////////////////////////
// Square Root OTFC, Radix 4 //
///////////////////////////////
module sotfc4(
input logic [3:0] s,
input logic Sqrt,
2022-08-06 22:54:05 +00:00
input logic [`DIVb+3:0] S, SM,
input logic [`DIVb+3:0] C,
output logic [`DIVb+3:0] SNext, SMNext
);
// The on-the-fly converter transfers the square root
// bits to the quotient as they come.
// Use this otfc for division and square root.
always_comb begin
if (s[3]) begin
SNext = S | ((C << 1)&~(C << 2));
SMNext = S | (C&~(C << 1));
end else if (s[2]) begin
SNext = S | (C&~(C << 1));
SMNext = S;
end else if (s[1]) begin
SNext = SM | (C&~(C << 2));
SMNext = SM | ((C << 1)&~(C << 2));
end else if (s[0]) begin
SNext = SM | ((C << 1)&~(C << 2));
SMNext = SM | (C&~(C << 1));
end else begin // If sp and sn are not true, then sz is
SNext = S;
SMNext = SM | (C & ~(C << 2));
end
end
endmodule