forgot some files

This commit is contained in:
Katherine Parry 2022-07-15 21:42:45 +00:00
parent e498d87c5c
commit a4cd157f00
3 changed files with 506 additions and 0 deletions

112
pipelined/src/fpu/otfc.sv Normal file
View File

@ -0,0 +1,112 @@
///////////////////////////////////////////
// otfc.sv
//
// Written: me@KatherineParry.com, cturek@hmc.edu
// Modified:7/14/2022
//
// Purpose: On the fly conversion
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module otfc2 (
input logic qp, qz,
input logic [`QLEN-1:0] Q, QM,
output logic [`QLEN-1:0] QNext, QMNext
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
// Use this otfc for division only.
logic [`QLEN-2:0] QR, QMR;
assign QR = Q[`QLEN-2:0];
assign QMR = QM[`QLEN-2:0]; // Shifted Q and QM
always_comb begin
if (qp) begin
QNext = {QR, 1'b1};
QMNext = {QR, 1'b0};
end else if (qz) begin
QNext = {QR, 1'b0};
QMNext = {QMR, 1'b1};
end else begin // If qp and qz are not true, then qn is
QNext = {QMR, 1'b1};
QMNext = {QMR, 1'b0};
end
end
endmodule
module otfc4 (
input logic [3:0] q,
input logic [`QLEN-1:0] Q, QM,
output logic [`QLEN-1:0] QNext, QMNext
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
//
// This code follows the psuedocode presented in the
// floating point chapter of the book. Right now,
// it is written for Radix-4 division.
//
// QM is Q-1. It allows us to write negative bits
// without using a costly CPA.
// QR and QMR are the shifted versions of Q and QM.
// They are treated as [N-1:r] size signals, and
// discard the r most significant bits of Q and QM.
logic [`QLEN-3:0] QR, QMR;
// shift Q (quotent) and QM (quotent-1)
// if q = 2 Q = {Q, 10} QM = {Q, 01}
// else if q = 1 Q = {Q, 01} QM = {Q, 00}
// else if q = 0 Q = {Q, 00} QM = {QM, 11}
// else if q = -1 Q = {QM, 11} QM = {QM, 10}
// else if q = -2 Q = {QM, 10} QM = {QM, 01}
assign QR = Q[`QLEN-3:0];
assign QMR = QM[`QLEN-3:0]; // Shifted Q and QM
always_comb begin
if (q[3]) begin // +2
QNext = {QR, 2'b10};
QMNext = {QR, 2'b01};
end else if (q[2]) begin // +1
QNext = {QR, 2'b01};
QMNext = {QR, 2'b00};
end else if (q[1]) begin // -1
QNext = {QMR, 2'b11};
QMNext = {QMR, 2'b10};
end else if (q[0]) begin // -2
QNext = {QMR, 2'b10};
QMNext = {QMR, 2'b01};
end else begin // 0
QNext = {QR, 2'b00};
QMNext = {QMR, 2'b11};
end
end
// Final Quoteint is in the range [.5, 2)
endmodule

135
pipelined/src/fpu/qsel.sv Normal file
View File

@ -0,0 +1,135 @@
///////////////////////////////////////////
// srt.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module qsel2 ( // *** eventually just change to 4 bits
input logic [`DIVLEN+3:`DIVLEN] ps, pc,
output logic qp, qz//, qn
);
logic [`DIVLEN+3:`DIVLEN] p, g;
logic magnitude, sign, cout;
// The quotient selection logic is presented for simplicity, not
// for efficiency. You can probably optimize your logic to
// select the proper divisor with less delay.
// Quotient equations from EE371 lecture notes 13-20
assign p = ps ^ pc;
assign g = ps & pc;
assign magnitude = ~(&p[`DIVLEN+2:`DIVLEN]);
assign cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN]));
assign sign = p[`DIVLEN+3] ^ cout;
/* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) &
(ps[52]^pc[52]));
assign #1 sign = (ps[55]^pc[55])^
(ps[54] & pc[54] | ((ps[54]^pc[54]) &
(ps[53]&pc[53] | ((ps[53]^pc[53]) &
(ps[52]&pc[52]))))); */
// Produce quotient = +1, 0, or -1
assign qp = magnitude & ~sign;
assign qz = ~magnitude;
// assign #1 qn = magnitude & sign;
endmodule
module qsel4 (
input logic [`DIVLEN+3:0] D,
input logic [`DIVLEN+3:0] WS, WC,
output logic [3:0] q
);
logic [6:0] Wmsbs;
logic [7:0] PreWmsbs;
logic [2:0] Dmsbs;
assign PreWmsbs = WC[`DIVLEN+3:`DIVLEN-4] + WS[`DIVLEN+3:`DIVLEN-4];
assign Wmsbs = PreWmsbs[7:1];
assign Dmsbs = D[`DIVLEN-1:`DIVLEN-3];
// D = 0001.xxx...
// Dmsbs = | |
// W = xxxx.xxx...
// Wmsbs = | |
logic [3:0] QSel4[1023:0];
always_comb begin
integer d, w, i, w2;
for(d=0; d<8; d++)
for(w=0; w<128; w++)begin
i = d*128+w;
w2 = w-128*(w>=64); // convert to two's complement
case(d)
0: if($signed(w2)>=$signed(12)) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-4) QSel4[i] = 4'b0000;
else if(w2>=-13) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
1: if(w2>=14) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-15) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
2: if(w2>=15) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-16) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
3: if(w2>=16) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-18) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
4: if(w2>=18) QSel4[i] = 4'b1000;
else if(w2>=6) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-20) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
5: if(w2>=20) QSel4[i] = 4'b1000;
else if(w2>=6) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-20) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
6: if(w2>=20) QSel4[i] = 4'b1000;
else if(w2>=8) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-22) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
7: if(w2>=24) QSel4[i] = 4'b1000;
else if(w2>=8) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-24) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
endcase
end
end
assign q = QSel4[{Dmsbs,Wmsbs}];
endmodule

259
pipelined/src/fpu/srt.sv Normal file
View File

@ -0,0 +1,259 @@
///////////////////////////////////////////
// srt.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
// Modified:13 January 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module srt(
input logic clk,
input logic DivStart,
input logic DivBusy,
input logic [`FMTBITS-1:0] FmtE,
input logic [`NE-1:0] Xe, Ye,
input logic XZeroE, YZeroE,
input logic [`DIVLEN-1:0] X,
input logic [`DIVLEN-1:0] Dpreproc,
input logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt,
input logic NegSticky,
output logic [`QLEN-1-(`RADIX/4):0] Quot,
output logic [`DIVLEN+3:0] NextWSN, NextWCN,
output logic [`DIVLEN+3:0] StickyWSA,
output logic [`DIVLEN+3:0] FirstWS, FirstWC,
output logic [`NE+1:0] DivCalcExpM,
output logic [`XLEN-1:0] Rem
);
/* verilator lint_off UNOPTFLAT */
logic [`DIVLEN+3:0] WSA[`DIVCOPIES-1:0];
logic [`DIVLEN+3:0] WCA[`DIVCOPIES-1:0];
logic [`DIVLEN+3:0] WS[`DIVCOPIES-1:0];
logic [`DIVLEN+3:0] WC[`DIVCOPIES-1:0];
logic [`QLEN-1:0] Q[`DIVCOPIES-1:0];
logic [`QLEN-1:0] QM[`DIVCOPIES-1:0];
logic [`QLEN-1:0] QNext[`DIVCOPIES-1:0];
logic [`QLEN-1:0] QMNext[`DIVCOPIES-1:0];
/* verilator lint_on UNOPTFLAT */
logic [`DIVLEN+3:0] WSN, WCN;
logic [`DIVLEN+3:0] D, DBar, D2, DBar2;
logic [`NE+1:0] DivCalcExp;
logic [$clog2(`XLEN+1)-1:0] intExp;
logic intSign;
logic [`QLEN-1:0] QMMux;
// Top Muxes and Registers
// When start is asserted, the inputs are loaded into the divider.
// Otherwise, the divisor is retained and the partial remainder
// is fed back for the next iteration.
// - when the start signal is asserted X and 0 are loaded into WS and WC
// - otherwise load WSA into the flipflop
// - the assumed one is added to D since it's always normalized (and X/0 is a special case handeled by result selection)
// - XZeroE is used as the assumed one to avoid creating a sticky bit - all other numbers are normalized
if (`RADIX == 2) begin : nextw
assign NextWSN = {WSA[`DIVCOPIES-1][`DIVLEN+2:0], 1'b0};
assign NextWCN = {WCA[`DIVCOPIES-1][`DIVLEN+2:0], 1'b0};
end else begin
assign NextWSN = {WSA[`DIVCOPIES-1][`DIVLEN+1:0], 2'b0};
assign NextWCN = {WCA[`DIVCOPIES-1][`DIVLEN+1:0], 2'b0};
end
mux2 #(`DIVLEN+4) wsmux(NextWSN, {3'b000, ~XZeroE, X}, DivStart, WSN);
flopen #(`DIVLEN+4) wsflop(clk, DivStart|DivBusy, WSN, WS[0]);
mux2 #(`DIVLEN+4) wcmux(NextWCN, {`DIVLEN+4{1'b0}}, DivStart, WCN);
flopen #(`DIVLEN+4) wcflop(clk, DivStart|DivBusy, WCN, WC[0]);
flopen #(`DIVLEN+4) dflop(clk, DivStart, {4'b0001, Dpreproc}, D);
flopen #(`NE+2) expflop(clk, DivStart, DivCalcExp, DivCalcExpM);
// Divisor Selections
// - choose the negitive version of what's being selected
assign DBar = ~D;
if(`RADIX == 4) begin : d2
assign DBar2 = {~D[`DIVLEN+2:0], 1'b1};
assign D2 = {D[`DIVLEN+2:0], 1'b0};
end
genvar i;
generate
for(i=0; $unsigned(i)<`DIVCOPIES; i++) begin : interations
divinteration divinteration(.D, .DBar, .D2, .DBar2,
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]), .Q(Q[i]), .QM(QM[i]), .QNext(QNext[i]), .QMNext(QMNext[i]));
if(i<(`DIVCOPIES-1)) begin
if (`RADIX==2)begin
assign WS[i+1] = {WSA[i][`DIVLEN+1:0], 1'b0};
assign WC[i+1] = {WCA[i][`DIVLEN+1:0], 1'b0};
end else begin
assign WS[i+1] = {WSA[i][`DIVLEN+1:0], 2'b0};
assign WC[i+1] = {WCA[i][`DIVLEN+1:0], 2'b0};
end
assign Q[i+1] = QNext[i];
assign QM[i+1] = QMNext[i];
end
end
endgenerate
// if starting a new divison set Q to 0 and QM to -1
mux2 #(`QLEN) QMmux(QMNext[`DIVCOPIES-1], {`QLEN{1'b1}}, DivStart, QMMux);
flopenr #(`QLEN) Qreg(clk, DivStart, DivBusy, QNext[`DIVCOPIES-1], Q[0]);
flopen #(`QLEN) QMreg(clk, DivBusy, QMMux, QM[0]);
assign Quot = NegSticky ? QM[0][`QLEN-1-(`RADIX/4):0] : Q[0][`QLEN-1-(`RADIX/4):0];
assign FirstWS = WS[0];
assign FirstWC = WC[0];
if(`RADIX==2)
if (`DIVCOPIES == 1)
assign StickyWSA = {WSA[0][`DIVLEN+2:0], 1'b0};
else
assign StickyWSA = {WSA[1][`DIVLEN+2:0], 1'b0};
expcalc expcalc(.FmtE, .Xe, .Ye, .XZeroE, .XZeroCnt, .YZeroCnt, .DivCalcExp);
endmodule
////////////////
// Submodules //
////////////////
/* verilator lint_off UNOPTFLAT */
module divinteration (
input logic [`DIVLEN+3:0] D,
input logic [`DIVLEN+3:0] DBar, D2, DBar2,
input logic [`QLEN-1:0] Q, QM,
input logic [`DIVLEN+3:0] WS, WC,
output logic [`QLEN-1:0] QNext, QMNext,
output logic [`DIVLEN+3:0] WSA, WCA
);
/* verilator lint_on UNOPTFLAT */
logic [`DIVLEN+3:0] Dsel;
logic [3:0] q;
logic qp, qz;//, qn;
// Quotient Selection logic
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
// q encoding:
// 1000 = +2
// 0100 = +1
// 0000 = 0
// 0010 = -1
// 0001 = -2
if(`RADIX == 2) begin : qsel
qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz);//, qn);
end else begin
qsel4 qsel4(.D, .WS, .WC, .q);
end
if(`RADIX == 2) begin : dsel
assign Dsel = {`DIVLEN+4{~qz}}&(qp ? DBar : D);
end else begin
always_comb
case (q)
4'b1000: Dsel = DBar2;
4'b0100: Dsel = DBar;
4'b0000: Dsel = '0;
4'b0010: Dsel = D;
4'b0001: Dsel = D2;
default: Dsel = 'x;
endcase
end
// Partial Product Generation
// WSA, WCA = WS + WC - qD
if (`RADIX == 2) begin : csa
csa #(`DIVLEN+4) csa(WS, WC, Dsel, qp, WSA, WCA);
end else begin
csa #(`DIVLEN+4) csa(WS, WC, Dsel, |q[3:2], WSA, WCA);
end
if (`RADIX == 2) begin : otfc
otfc2 otfc2(.qp, .qz, .Q, .QM, .QNext, .QMNext);
end else begin
otfc4 otfc4(.q, .Q, .QM, .QNext, .QMNext);
end
endmodule
/////////
// csa //
/////////
module csa #(parameter N=69) (
input logic [N-1:0] in1, in2, in3,
input logic cin,
output logic [N-1:0] out1, out2
);
// This block adds in1, in2, in3, and cin to produce
// a result out1 / out2 in carry-save redundant form.
// cin is just added to the least significant bit and
// is Startuired to handle adding a negative divisor.
// Fortunately, the carry (out2) is shifted left by one
// bit, leaving room in the least significant bit to
// insert cin.
assign out1 = in1 ^ in2 ^ in3;
assign out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) |
(in2[N-2:0] & in3[N-2:0]), cin};
endmodule
module expcalc(
input logic [`FMTBITS-1:0] FmtE,
input logic [`NE-1:0] Xe, Ye,
input logic XZeroE,
input logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt,
output logic [`NE+1:0] DivCalcExp
);
logic [`NE-2:0] Bias;
if (`FPSIZES == 1) begin
assign Bias = (`NE-1)'(`BIAS);
end else if (`FPSIZES == 2) begin
assign Bias = FmtE ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
end else if (`FPSIZES == 3) begin
always_comb
case (FmtE)
`FMT: Bias = (`NE-1)'(`BIAS);
`FMT1: Bias = (`NE-1)'(`BIAS1);
`FMT2: Bias = (`NE-1)'(`BIAS2);
default: Bias = 'x;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (FmtE)
2'h3: Bias = (`NE-1)'(`Q_BIAS);
2'h1: Bias = (`NE-1)'(`D_BIAS);
2'h0: Bias = (`NE-1)'(`S_BIAS);
2'h2: Bias = (`NE-1)'(`H_BIAS);
endcase
end
// correct exponent for denormalized input's normalization shifts
assign DivCalcExp = ({2'b0, Xe} - {{`NE+1-$unsigned($clog2(`NF+2)){1'b0}}, XZeroCnt} - {2'b0, Ye} + {{`NE+1-$unsigned($clog2(`NF+2)){1'b0}}, YZeroCnt} + {3'b0, Bias})&{`NE+2{~XZeroE}};
endmodule