cvw/synthDC/ppa/ppaAnalyze.py

737 lines
27 KiB
Python
Raw Normal View History

2022-05-17 18:29:38 +00:00
#!/usr/bin/python3
# Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22
2022-06-03 21:23:04 +00:00
import scipy.optimize as opt
2022-05-17 18:29:38 +00:00
import subprocess
import csv
import re
2022-05-27 20:59:23 +00:00
from matplotlib.cbook import flatten
2022-05-17 18:29:38 +00:00
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import matplotlib as mpl
2022-05-17 18:29:38 +00:00
import numpy as np
from collections import namedtuple
2022-06-03 21:23:04 +00:00
import sklearn.metrics as skm
import os
def synthsfromcsv(filename):
Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy")
with open(filename, newline='') as csvfile:
csvreader = csv.reader(csvfile)
global allSynths
2022-06-03 21:23:04 +00:00
allSynths = list(csvreader)[1:]
for i in range(len(allSynths)):
for j in range(len(allSynths[0])):
try: allSynths[i][j] = int(allSynths[i][j])
except:
try: allSynths[i][j] = float(allSynths[i][j])
except: pass
allSynths[i] = Synth(*allSynths[i])
2022-06-03 21:23:04 +00:00
return allSynths
def synthsintocsv():
''' writes a CSV with one line for every available synthesis
each line contains the module, tech, width, target freq, and resulting metrics
'''
2022-05-27 20:59:23 +00:00
print("This takes a moment...")
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
specReg = re.compile('[a-zA-Z0-9]+')
2022-06-03 21:23:04 +00:00
metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*')
file = open("ppaData.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (nJ)'])
2022-05-17 18:29:38 +00:00
for oneSynth in allSynths:
module, width, risc, tech, freq = specReg.findall(oneSynth)[2:7]
tech = tech[:-2]
metrics = []
for phrase in [['Path Slack', 'qor'], ['Design Area', 'qor'], ['100', 'power']]:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
bashCommand = bashCommand.format(*phrase)
try: output = subprocess.check_output(['bash','-c', bashCommand])
2022-06-03 21:23:04 +00:00
except:
print(module + width + tech + freq + " doesn't have reports")
print("Consider running cleanup() first")
nums = metricReg.findall(str(output))
nums = [float(m) for m in nums]
metrics += nums
delay = 1000/int(freq) - metrics[0]
area = metrics[1]
lpower = metrics[4]
denergy = (metrics[2] + metrics[3])/int(freq)*1000 # (switching + internal powers)*delay, more practical units for regression coefs
2022-06-03 21:23:04 +00:00
if ('flop' in module): # since two flops in each module
[area, lpower, denergy] = [n/2 for n in [area, lpower, denergy]]
writer.writerow([module, tech, width, freq, delay, area, lpower, denergy])
file.close()
2022-05-17 18:29:38 +00:00
def cleanup():
''' removes runs that didn't work
'''
bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*'
try:
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
for run in allSynths:
run = run.split('MHz')[0]
bc = 'rm -r '+ run + '*'
output = subprocess.check_output(['bash','-c', bc])
except: pass
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
for oneSynth in allSynths:
for phrase in [['Path Length', 'qor']]:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
bashCommand = bashCommand.format(*phrase)
try: output = subprocess.check_output(['bash','-c', bashCommand])
except:
bc = 'rm -r '+ oneSynth[2:]
2022-06-15 18:28:36 +00:00
output = subprocess.check_output(['bash','-c', bc])
print("All cleaned up!")
2022-06-15 18:28:36 +00:00
def getVals(tech, module, var, freq=None, width=None):
''' for a specified tech, module, and variable/metric
returns a list of values for that metric in ascending width order
2022-05-27 20:59:23 +00:00
works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width
'''
2022-06-15 18:28:36 +00:00
if width != None:
widthsToGet = width
else:
widthsToGet = widths
2022-05-19 20:24:47 +00:00
metric = []
widthL = []
2022-05-27 20:59:23 +00:00
if (freq != None):
for oneSynth in allSynths:
2022-06-10 21:11:39 +00:00
if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module) & (oneSynth.width != 1):
widthL += [oneSynth.width]
osdict = oneSynth._asdict()
metric += [osdict[var]]
metric = [x for _, x in sorted(zip(widthL, metric))] # ordering
else:
2022-06-15 18:28:36 +00:00
for w in widthsToGet:
for oneSynth in bestSynths:
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module):
osdict = oneSynth._asdict()
met = osdict[var]
metric += [met]
return metric
2022-05-17 18:29:38 +00:00
2022-06-15 18:28:36 +00:00
def csvOfBest(filename):
2022-06-03 21:23:04 +00:00
bestSynths = []
for tech in [x.tech for x in techSpecs]:
for mod in modules:
for w in widths:
m = np.Inf # large number to start
2022-06-03 21:23:04 +00:00
best = None
for oneSynth in allSynths: # best achievable, rightmost green
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq):
m = oneSynth.delay
best = oneSynth
2022-06-15 18:28:36 +00:00
2022-06-03 21:23:04 +00:00
if (best != None) & (best not in bestSynths):
bestSynths += [best]
2022-06-15 18:28:36 +00:00
file = open(filename, "w")
2022-06-03 21:23:04 +00:00
writer = csv.writer(file)
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (nJ)'])
2022-06-03 21:23:04 +00:00
for synth in bestSynths:
writer.writerow(list(synth))
file.close()
return bestSynths
2022-06-03 21:23:04 +00:00
2022-06-10 21:11:39 +00:00
def genLegend(fits, coefs, r2=None, spec=None, ale=False):
''' generates a list of two legend elements (or just an equation if no r2 or spec)
labels line with fit equation and dots with r squared of the fit
'''
2022-05-19 20:24:47 +00:00
2022-06-10 21:11:39 +00:00
coefsr = [str(sigfig(c, 2)) for c in coefs]
if ale:
if (normAddWidth == 32):
2022-06-10 21:11:39 +00:00
sub = 'S'
elif normAddWidth != 1:
2022-06-10 21:11:39 +00:00
print('Equations are wrong, check normAddWidth')
else:
sub = 'N'
eqDict = {'c': '', 'l': sub, 's': '$'+sub+'^2$', 'g': '$log_2$('+sub+')', 'n': ''+sub+'$log_2$('+sub+')'}
eq = ''
ind = 0
2022-06-03 21:23:04 +00:00
for k in eqDict.keys():
if k in fits:
2022-06-10 21:11:39 +00:00
if str(coefsr[ind]) != '0': eq += " + " + coefsr[ind] + eqDict[k]
2022-06-03 21:23:04 +00:00
ind += 1
eq = eq[3:] # chop off leading ' + '
2022-05-19 20:24:47 +00:00
2022-06-10 21:11:39 +00:00
if (r2==None) or (spec==None):
return eq
else:
legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)]
legend_elements += [lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label='$R^2$='+ str(round(r2, 4)))]
return legend_elements
2022-05-19 20:24:47 +00:00
2022-05-30 18:54:02 +00:00
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None):
''' module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
fits: constant, linear, square, log2, Nlog2
plots given variable vs width for all matching syntheses with regression
2022-05-17 18:29:38 +00:00
'''
singlePlot = True
if ax or (freq == 10):
singlePlot = False
2022-05-19 20:24:47 +00:00
if ax is None:
ax = plt.gca()
fullLeg = []
2022-06-03 22:53:03 +00:00
allWidths = []
allMetrics = []
ale = (var != 'delay') # if not delay, must be area, leakage, or energy
2022-06-10 21:11:39 +00:00
modFit = fitDict[module]
fits = modFit[ale]
2022-06-10 21:11:39 +00:00
if freq:
ls = '--'
else:
ls = '-'
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
if norm:
techdict = spec._asdict()
norm = techdict[var]
metric = [m/norm for m in metric]
2022-05-27 20:59:23 +00:00
if len(metric) == 5: # don't include the spec if we don't have points for all widths
2022-06-10 21:11:39 +00:00
xp, pred, coefs, r2 = regress(widths, metric, fits, ale)
fullLeg += genLegend(fits, coefs, r2, spec, ale=ale)
2022-05-30 18:54:02 +00:00
c = color if color else spec.color
ax.scatter(widths, metric, color=c, marker=spec.shape)
2022-06-10 21:11:39 +00:00
ax.plot(xp, pred, color=c, linestyle=ls)
allWidths += widths
allMetrics += metric
2022-05-19 20:24:47 +00:00
xp, pred, coefs, r2 = regress(allWidths, allMetrics, fits)
2022-06-10 21:11:39 +00:00
ax.plot(xp, pred, color='red', linestyle=ls)
2022-06-03 22:53:03 +00:00
if norm:
2022-06-03 21:23:04 +00:00
ylabeldic = {"lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)"}
else:
ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (nJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"}
2022-05-27 20:59:23 +00:00
ax.set_ylabel(ylabeldic[var])
2022-06-15 18:28:36 +00:00
ax.set_xticks(widths)
2022-05-19 20:24:47 +00:00
2022-06-15 18:28:36 +00:00
if singlePlot or (var == 'lpower') or (var == 'denergy'):
ax.set_xlabel("Width (bits)")
if not singlePlot and ((var == 'delay') or (var == 'area')):
ax.tick_params(labelbottom=False)
2022-05-19 20:24:47 +00:00
if singlePlot:
2022-06-15 18:28:36 +00:00
fullLeg += genLegend(fits, coefs, r2, combined, ale=ale)
legLoc = 'upper left' if ale else 'center right'
ax.add_artist(ax.legend(handles=fullLeg, loc=legLoc))
2022-05-27 20:59:23 +00:00
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
ax.set_title(module + titleStr)
2022-07-05 22:28:25 +00:00
plt.savefig('.plots/'+ module + '_' + var + '.png')
# plt.show()
2022-06-10 21:11:39 +00:00
return r2
2022-05-19 20:24:47 +00:00
2022-06-10 21:11:39 +00:00
def regress(widths, var, fits='clsgn', ale=False):
''' fits a curve to the given points
2022-06-10 21:11:39 +00:00
returns lists of x and y values to plot that curve and coefs for the eq with r2
'''
2022-05-19 20:24:47 +00:00
funcArr = genFuncs(fits)
2022-06-15 18:28:36 +00:00
xp = np.linspace(min(widths)/2, max(widths)*1.1, 200)
2022-06-10 21:11:39 +00:00
xpToCalc = xp
if ale:
widths = [w/normAddWidth for w in widths]
xpToCalc = [x/normAddWidth for x in xp]
mat = []
for w in widths:
2022-05-19 20:24:47 +00:00
row = []
for func in funcArr:
row += [func(w)]
mat += [row]
y = np.array(var, dtype=np.float)
coefs = opt.nnls(mat, y)[0]
2022-06-10 21:11:39 +00:00
2022-06-03 21:23:04 +00:00
yp = []
for w in widths:
n = [func(w) for func in funcArr]
yp += [sum(np.multiply(coefs, n))]
r2 = skm.r2_score(y, yp)
pred = []
2022-06-10 21:11:39 +00:00
for x in xpToCalc:
n = [func(x) for func in funcArr]
pred += [sum(np.multiply(coefs, n))]
return xp, pred, coefs, r2
def makeCoefTable():
2022-06-10 21:11:39 +00:00
''' writes CSV with each line containing the coefficients for a regression fit
to a particular combination of module, metric (including both techs, normalized)
'''
file = open("ppaFitting.csv", "w")
writer = csv.writer(file)
2022-06-10 21:11:39 +00:00
writer.writerow(['Module', 'Metric', 'Target', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2'])
for module in modules:
2022-06-10 21:11:39 +00:00
for freq in [10, None]:
target = 'easy' if freq else 'hard'
for var in ['delay', 'area', 'lpower', 'denergy']:
ale = (var != 'delay')
metL = []
modFit = fitDict[module]
fits = modFit[ale]
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
techdict = spec._asdict()
norm = techdict[var]
metL += [m/norm for m in metric]
xp, pred, coefs, r2 = regress(widths*2, metL, fits, ale)
coefs = np.ndarray.tolist(coefs)
coefsToWrite = [None]*5
fitTerms = 'clsgn'
ind = 0
for i in range(len(fitTerms)):
if fitTerms[i] in fits:
coefsToWrite[i] = coefs[ind]
ind += 1
row = [module, var, target] + coefsToWrite + [r2]
writer.writerow(row)
file.close()
def sigfig(num, figs):
return '{:g}'.format(float('{:.{p}g}'.format(num, p=figs)))
def makeEqTable():
''' writes CSV with each line containing the equations for fits for each metric
to a particular module (including both techs, normalized)
'''
file = open("ppaEquations.csv", "w")
writer = csv.writer(file)
writer.writerow(['Element', 'Best delay', 'Fast area', 'Fast leakage', 'Fast energy', 'Small area', 'Small leakage', 'Small energy'])
for module in modules:
eqs = []
for freq in [None, 10]:
for var in ['delay', 'area', 'lpower', 'denergy']:
if (var == 'delay') and (freq == 10):
pass
else:
ale = (var != 'delay')
metL = []
modFit = fitDict[module]
fits = modFit[ale]
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
techdict = spec._asdict()
norm = techdict[var]
metL += [m/norm for m in metric]
xp, pred, coefs, r2 = regress(widths*2, metL, fits, ale)
coefs = np.ndarray.tolist(coefs)
eqs += [genLegend(fits, coefs, ale=ale)]
row = [module] + eqs
writer.writerow(row)
2022-05-17 18:29:38 +00:00
file.close()
2022-05-17 18:29:38 +00:00
2022-05-19 20:24:47 +00:00
def genFuncs(fits='clsgn'):
''' helper function for regress()
returns array of functions with one for each term desired in the regression fit
'''
2022-05-19 20:24:47 +00:00
funcArr = []
if 'c' in fits:
funcArr += [lambda x: 1]
if 'l' in fits:
funcArr += [lambda x: x]
if 's' in fits:
funcArr += [lambda x: x**2]
if 'g' in fits:
funcArr += [lambda x: np.log2(x)]
if 'n' in fits:
funcArr += [lambda x: x*np.log2(x)]
return funcArr
def noOutliers(median, freqs, delays, areas):
''' returns a pared down list of freqs, delays, and areas
cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area
helper function to freqPlot()
'''
2022-05-19 20:24:47 +00:00
f=[]
d=[]
a=[]
for i in range(len(freqs)):
norm = freqs[i]/median
if (norm > 0.4) & (norm<1.4):
f += [freqs[i]]
d += [delays[i]]
a += [areas[i]]
2022-05-19 20:24:47 +00:00
return f, d, a
def freqPlot(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
'''
freqsL, delaysL, areasL = ([[], []] for i in range(3))
2022-05-19 20:24:47 +00:00
for oneSynth in allSynths:
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
median = np.median(list(flatten(freqsL)))
2022-06-03 21:23:04 +00:00
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
2022-06-15 18:28:36 +00:00
for ax in (ax1, ax2):
2022-06-03 21:23:04 +00:00
ax.ticklabel_format(useOffset=False, style='plain')
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
freqs = freqsL[ind]
2022-06-15 18:28:36 +00:00
freqs, delays, areas = noOutliers(median, freqs, delays, areas) # comment out to see all syntheses
c = 'blue' if ind else 'green'
ax1.scatter(freqs, delays, color=c)
ax2.scatter(freqs, areas, color=c)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
2022-05-19 20:24:47 +00:00
ax1.legend(handles=legend_elements)
2022-06-10 21:11:39 +00:00
width = str(width)
ax2.set_xlabel("Target Freq (MHz)")
2022-05-19 20:24:47 +00:00
ax1.set_ylabel('Delay (ns)')
ax2.set_ylabel('Area (sq microns)')
2022-06-10 21:11:39 +00:00
ax1.set_title(mod + '_' + width)
if ('mux' in mod) & ('d' in mod):
width = mod
mod = 'muxd'
plt.savefig('./plots/freqBuckshot/' + tech + '/' + mod + '/' + width + '.png')
# plt.show()
2022-05-17 18:29:38 +00:00
2022-05-26 22:24:39 +00:00
def squareAreaDelay(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
'''
global allSynths
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
2022-05-27 20:59:23 +00:00
f, (ax1) = plt.subplots(1, 1)
ax2 = ax1.twinx()
2022-05-26 22:24:39 +00:00
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
2022-05-27 20:59:23 +00:00
targets = freqsL[ind]
targets = [1000/f for f in targets]
targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all
if not ind:
achievedDelays = delays
2022-05-26 22:24:39 +00:00
c = 'blue' if ind else 'green'
2022-05-27 20:59:23 +00:00
ax1.scatter(targets, delays, marker='^', color=c)
ax2.scatter(targets, areas, marker='s', color=c)
bestAchieved = min(achievedDelays)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'),
lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'),
lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'),
lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')]
ax2.legend(handles=legend_elements, loc='upper left')
ax1.set_xlabel("Delay Targeted (ns)")
ax1.set_ylabel("Delay Achieved (ns)")
ax2.set_ylabel('Area (sq microns)')
ax1.set_title(mod + '_' + str(width))
2022-05-26 22:24:39 +00:00
2022-05-27 20:59:23 +00:00
squarify(f)
xvals = np.array(ax1.get_xlim())
frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0])
areaLowerLim = min(flatten(areasL))-100
areaUpperLim = max(flatten(areasL))/frac + areaLowerLim
ax2.set_ylim([areaLowerLim, areaUpperLim])
ax1.plot(xvals, xvals, ls="--", c=".3")
ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--')
2022-05-26 22:24:39 +00:00
plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png')
# plt.show()
2022-05-26 22:24:39 +00:00
2022-05-27 20:59:23 +00:00
def squarify(fig):
''' helper function for squareAreaDelay()
forces matplotlib figure to be a square
'''
w, h = fig.get_size_inches()
if w > h:
t = fig.subplotpars.top
b = fig.subplotpars.bottom
axs = h*(t-b)
l = (1.-axs/w)/2
fig.subplots_adjust(left=l, right=1-l)
else:
t = fig.subplotpars.right
b = fig.subplotpars.left
axs = w*(t-b)
l = (1.-axs/h)/2
fig.subplots_adjust(bottom=l, top=1-l)
def plotPPA(mod, freq=None, norm=True, aleOpt=False):
''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits
2022-05-27 20:59:23 +00:00
if no freq specified, uses the synthesis with best achievable delay for each width
overlays data from both techs
'''
with mpl.rc_context({"figure.figsize": (7,3.46)}):
fig, axs = plt.subplots(2, 2)
2022-06-10 21:11:39 +00:00
arr = [['delay', 'area'], ['lpower', 'denergy']]
freqs = [freq]
if aleOpt: freqs += [10]
for i in [0, 1]:
for j in [0, 1]:
leg = []
for f in freqs:
if (arr[i][j]=='delay') and (f==10):
pass
else:
r2 = oneMetricPlot(mod, arr[i][j], ax=axs[i, j], freq=f, norm=norm)
ls = '--' if f else '-'
leg += [lines.Line2D([0], [0], color='red', label='$R^2$='+str(round(r2, 4)), linestyle=ls)]
2022-06-15 18:28:36 +00:00
if (mod in ['flop', 'csa']) & (arr[i][j] == 'delay'):
axs[i, j].set_ylim(ymin=0)
ytop = axs[i, j].get_ylim()[1]
axs[i, j].set_ylim(ymax=1.1*ytop)
else:
axs[i, j].legend(handles=leg, handlelength=1.5)
2022-06-10 21:11:39 +00:00
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else ""
plt.suptitle(mod + titleStr)
2022-06-15 18:28:36 +00:00
plt.tight_layout(pad=0.05, w_pad=1, h_pad=0.5, rect=(0,0,1,0.97))
2022-06-10 21:11:39 +00:00
if freq != 10:
n = 'normalized' if norm else 'unnormalized'
2022-07-05 22:28:25 +00:00
saveStr = './plots/'+ n + '/' + mod + '.png'
2022-06-10 21:11:39 +00:00
plt.savefig(saveStr)
# plt.show()
2022-05-30 18:54:02 +00:00
def makeLineLegend():
''' generates legend to accompany normalized plots
'''
2022-06-15 18:28:36 +00:00
plt.rcParams["figure.figsize"] = (5.5,0.3)
fig = plt.figure()
fullLeg = [lines.Line2D([0], [0], color='black', label='fastest', linestyle='-')]
fullLeg += [lines.Line2D([0], [0], color='black', label='smallest', linestyle='--')]
fullLeg += [lines.Line2D([0], [0], color='blue', label='tsmc28', marker='^')]
fullLeg += [lines.Line2D([0], [0], color='green', label='sky90', marker='o')]
fullLeg += [lines.Line2D([0], [0], color='red', label='combined', marker='_')]
fig.legend(handles=fullLeg, ncol=5, handlelength=1.4, loc='center')
2022-07-05 22:28:25 +00:00
saveStr = './plots/legend.png'
2022-06-15 18:28:36 +00:00
plt.savefig(saveStr)
def muxPlot(fits='clsgn', norm=True):
''' module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
fits: constant, linear, square, log2, Nlog2
plots given variable vs width for all matching syntheses with regression
'''
ax = plt.gca()
inputs = [2, 4, 8]
allInputs = inputs*2
fullLeg = []
for crit in ['data', 'control']:
allMetrics = []
muxes = ['mux2', 'mux4', 'mux8']
if crit == 'data':
ls = '--'
muxes = [m + 'd' for m in muxes]
elif crit == 'control':
ls = '-'
for spec in techSpecs:
metric = []
for module in muxes:
metric += getVals(spec.tech, module, 'delay', width=[1])
if norm:
techdict = spec._asdict()
norm = techdict['delay']
metric = [m/norm for m in metric]
# print(spec.tech, ' ', metric)
2022-06-15 18:28:36 +00:00
if len(metric) == 3: # don't include the spec if we don't have points for all
xp, pred, coefs, r2 = regress(inputs, metric, fits, ale=False)
ax.scatter(inputs, metric, color=spec.color, marker=spec.shape)
ax.plot(xp, pred, color=spec.color, linestyle=ls)
allMetrics += metric
xp, pred, coefs, r2 = regress(allInputs, allMetrics, fits)
ax.plot(xp, pred, color='red', linestyle=ls)
fullLeg += [lines.Line2D([0], [0], color='red', label=crit, linestyle=ls)]
ax.set_ylabel('Delay (FO4)')
ax.set_xticks(inputs)
ax.set_xlabel("Number of inputs")
ax.set_title('mux timing')
ax.legend(handles = fullLeg)
2022-07-05 22:28:25 +00:00
plt.savefig('./plots/mux.png')
2022-06-15 18:28:36 +00:00
def stdDevError():
''' calculates std deviation and error for paper-writing purposes
'''
for var in ['delay', 'area', 'lpower', 'denergy']:
errlist = []
for module in modules:
ale = (var != 'delay')
metL = []
modFit = fitDict[module]
fits = modFit[ale]
funcArr = genFuncs(fits)
for spec in techSpecs:
metric = getVals(spec.tech, module, var)
techdict = spec._asdict()
norm = techdict[var]
metL += [m/norm for m in metric]
if ale:
ws = [w/normAddWidth for w in widths]
else:
ws = widths
ws = ws*2
mat = []
for w in ws:
row = []
for func in funcArr:
row += [func(w)]
mat += [row]
y = np.array(metL, dtype=np.float)
coefs = opt.nnls(mat, y)[0]
yp = []
for w in ws:
n = [func(w) for func in funcArr]
yp += [sum(np.multiply(coefs, n))]
if (var == 'delay') & (module == 'flop'):
pass
elif (module == 'mult') & ale:
pass
else:
for i in range(len(y)):
errlist += [abs(y[i]/yp[i]-1)]
# print(module, ' ', var, ' ', np.mean(errlist[-10:]))
avgErr = np.mean(errlist)
stdv = np.std(errlist)
print(var, ' ', avgErr, ' ', stdv)
def makePlotDirectory():
''' creates plots directory in same level as this script to store plots in
'''
current_directory = os.getcwd()
final_directory = os.path.join(current_directory, 'plots')
if not os.path.exists(final_directory):
os.makedirs(final_directory)
os.chdir(final_directory)
for folder in ['freqBuckshot', 'normalized', 'unnormalized']:
new_directory = os.path.join(final_directory, folder)
if not os.path.exists(new_directory):
os.makedirs(new_directory)
os.chdir(new_directory)
if 'freq' in folder:
for tech in ['sky90', 'tsmc28']:
for mod in modules:
tech_directory = os.path.join(new_directory, tech)
mod_directory = os.path.join(tech_directory, mod)
if not os.path.exists(mod_directory):
os.makedirs(mod_directory)
os.chdir('..')
os.chdir(current_directory)
if __name__ == '__main__':
##############################
# set up stuff, global variables
widths = [8, 16, 32, 64, 128]
modules = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mux2', 'mux4', 'mux8', 'mult'] #, 'mux2d', 'mux4d', 'mux8d']
normAddWidth = 32 # divisor to use with N since normalizing to add_32
fitDict = {'add': ['cg', 'l', 'l'], 'mult': ['cg', 's', 's'], 'comparator': ['cg', 'l', 'l'], 'csa': ['c', 'l', 'l'], 'shiftleft': ['cg', 'l', 'ln'], 'flop': ['c', 'l', 'l'], 'priorityencoder': ['cg', 'l', 'l']}
fitDict.update(dict.fromkeys(['mux2', 'mux4', 'mux8'], ['cg', 'l', 'l']))
TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy")
techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1440.600027, 714.057, 0.658022690438], ['tsmc28', 'blue', '^', 12.2e-3, 209.286002, 1060.0, .08153281695882594]]
techSpecs = [TechSpec(*t) for t in techSpecs]
2022-06-10 21:11:39 +00:00
combined = TechSpec('combined fit', 'red', '_', 0, 0, 0, 0)
##############################
2022-06-03 21:23:04 +00:00
# cleanup() # run to remove garbage synth runs
synthsintocsv() # slow, run only when new synth runs to add to csv
2022-06-03 21:23:04 +00:00
allSynths = synthsfromcsv('ppaData.csv') # your csv here!
2022-06-15 18:28:36 +00:00
bestSynths = csvOfBest('bestSynths.csv')
makePlotDirectory()
# ### other functions
# makeCoefTable()
2022-06-10 21:11:39 +00:00
# makeEqTable()
2022-06-15 18:28:36 +00:00
# muxPlot()
# stdDevError()
for mod in modules:
for w in widths:
freqPlot('sky90', mod, w)
freqPlot('tsmc28', mod, w)
plotPPA(mod, norm=False)
plotPPA(mod, aleOpt=True)
plt.close('all')