cvw/wally-pipelined/src/fpu/fpu.sv

359 lines
14 KiB
Systemverilog
Raw Normal View History

2021-05-24 13:28:16 +00:00
///////////////////////////////////////////
//
2021-06-23 20:42:40 +00:00
// Written: Katherine Parry, Bret Mathis
// Modified: 6/23/2021
2021-05-24 13:28:16 +00:00
//
// Purpose: FPU
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
2021-04-08 18:03:21 +00:00
`include "wally-config.vh"
2021-04-04 18:09:13 +00:00
module fpu (
2021-06-22 20:36:16 +00:00
input logic clk,
2021-06-23 20:42:40 +00:00
input logic reset,
input logic [2:0] FRM_REGW, // Rounding mode from CSR
2021-06-22 20:36:16 +00:00
input logic [31:0] InstrD,
2021-06-23 20:42:40 +00:00
input logic [`XLEN-1:0] ReadDataW, // Read data from memory
2021-06-22 20:36:16 +00:00
input logic [`XLEN-1:0] SrcAE, // Integer input being processed
input logic [`XLEN-1:0] SrcAM, // Integer input being written into fpreg
input logic StallE, StallM, StallW,
input logic FlushE, FlushM, FlushW,
2021-07-02 16:40:58 +00:00
output logic FStallD, // Stall the decode stage
2021-06-22 20:36:16 +00:00
output logic FWriteIntE, FWriteIntM, FWriteIntW, // Write integer register enable
2021-06-24 22:39:18 +00:00
output logic [`XLEN-1:0] FWriteDataE, // Data to be written to memory
output logic [`XLEN-1:0] FIntResM,
2021-06-22 20:36:16 +00:00
output logic FDivBusyE, // Is the divison/sqrt unit busy
output logic IllegalFPUInstrD, // Is the instruction an illegal fpu instruction
2021-06-23 20:42:40 +00:00
output logic [4:0] SetFflagsM, // FPU flags
2021-06-22 20:36:16 +00:00
output logic [`XLEN-1:0] FPUResultW); // FPU result
2021-07-02 16:40:58 +00:00
// *** change FMA to do 16 - 32 - 64 - 128 FEXPBITS
2021-06-24 22:39:18 +00:00
generate
if (`F_SUPPORTED | `D_SUPPORTED) begin
// control logic signal instantiation
logic FWriteEnD, FWriteEnE, FWriteEnM, FWriteEnW; // FP register write enable
logic [2:0] FrmD, FrmE, FrmM; // FP rounding mode
logic FmtD, FmtE, FmtM, FmtW; // FP precision 0-single 1-double
logic FDivStartD, FDivStartE; // Start division
logic FWriteIntD; // Write to integer register
logic [1:0] ForwardXE, ForwardYE, ForwardZE; // Input3 forwarding mux control signal
logic [2:0] FResultSelD, FResultSelE, FResultSelM, FResultSelW; // Select FP result
logic [3:0] FOpCtrlD, FOpCtrlE, FOpCtrlM; // Select which opperation to do in each component
logic [1:0] FResSelD, FResSelE, FResSelM;
logic [1:0] FIntResSelD, FIntResSelE, FIntResSelM;
logic [4:0] Adr1E, Adr2E, Adr3E;
// regfile signals
logic [4:0] RdE, RdM, RdW; // what adress to write to // ***Can take from ieu insted of pipelining
logic [63:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage
logic [63:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage
logic [`XLEN-1:0] SrcXMAligned;
logic [63:0] SrcXE, SrcXM; // Input 1 to the various units (after forwarding)
logic [63:0] SrcYE, SrcYM; // Input 2 to the various units (after forwarding)
logic [63:0] SrcZE, SrcZM; // Input 3 to the various units (after forwarding)
// div/sqrt signals
logic [63:0] FDivResultM, FDivResultW;
logic [4:0] FDivSqrtFlgM, FDivSqrtFlgW;
logic FDivSqrtDoneE;
logic [63:0] DivInput1E, DivInput2E;
logic HoldInputs; // keep forwarded inputs arround durring division
//fpu signals
logic [63:0] FMAResM, FMAResW;
logic [4:0] FMAFlgM, FMAFlgW;
// add/cvt signals
logic [63:0] FAddResM, FAddResW;
logic [4:0] FAddFlgM, FAddFlgW;
logic [63:0] CvtResE, CvtResM;
logic [4:0] CvtFlgE, CvtFlgM;
// cmp signals
logic CmpNVE, CmpNVM, CmpNVW;
logic [63:0] CmpResE, CmpResM, CmpResW;
// fsgn signals
logic [63:0] SgnResE, SgnResM;
logic SgnNVE, SgnNVM, SgnNVW;
logic [63:0] FResM, FResW;
logic [4:0] FFlgM, FFlgW;
// instantiation of W stage regfile signals
logic [63:0] AlignedSrcAM;
// classify signals
logic [63:0] ClassResE, ClassResM;
// 64-bit FPU result
logic [63:0] FPUResult64W;
logic [4:0] FPUFlagsW;
//DECODE STAGE
// top-level controller for FPU
fctrl fctrl (.Funct7D(InstrD[31:25]), .OpD(InstrD[6:0]), .Rs2D(InstrD[24:20]), .Funct3D(InstrD[14:12]),
.FRM_REGW, .IllegalFPUInstrD, .FWriteEnD, .FDivStartD, .FResultSelD, .FOpCtrlD, .FResSelD,
.FIntResSelD, .FmtD, .FrmD, .FWriteIntD);
// regfile instantiation
fregfile fregfile (clk, reset, FWriteEnW,
InstrD[19:15], InstrD[24:20], InstrD[31:27], RdW,
FPUResult64W,
FRD1D, FRD2D, FRD3D);
2021-06-07 18:22:54 +00:00
2021-07-02 16:40:58 +00:00
//*****************
// D/E pipe registers
//*****************
flopenrc #(64) DEReg1(clk, reset, FlushE, ~StallE, FRD1D, FRD1E);
flopenrc #(64) DEReg2(clk, reset, FlushE, ~StallE, FRD2D, FRD2E);
flopenrc #(64) DEReg3(clk, reset, FlushE, ~StallE, FRD3D, FRD3E);
flopenrc #(1) DECtrlRegE1(clk, reset, FlushE, ~StallE, FDivStartD, FDivStartE);
flopenrc #(15) DECtrlRegE2(clk, reset, FlushE, ~StallE, {InstrD[19:15], InstrD[24:20], InstrD[31:27]},
{Adr1E, Adr2E, Adr3E});
flopenrc #(22) DECtrlReg3(clk, reset, FlushE, ~StallE,
{FWriteEnD, FResultSelD, FResSelD, FIntResSelD, FrmD, FmtD, InstrD[11:7], FOpCtrlD, FWriteIntD},
{FWriteEnE, FResultSelE, FResSelE, FIntResSelE, FrmE, FmtE, RdE, FOpCtrlE, FWriteIntE});
2021-07-02 16:40:58 +00:00
2021-06-05 16:06:33 +00:00
2021-07-02 16:40:58 +00:00
//EXECUTION STAGE
// Hazard unit for FPU
fhazard fhazard(.Adr1E, .Adr2E, .Adr3E, .FWriteEnM, .FWriteEnW, .RdM, .RdW, .FResultSelM, .FStallD,
.ForwardXE, .ForwardYE, .ForwardZE);
2021-07-02 16:40:58 +00:00
// forwarding muxs
mux3 #(64) fxemux(FRD1E, FPUResult64W, FResM, ForwardXE, SrcXE);
mux3 #(64) fyemux(FRD2E, FPUResult64W, FResM, ForwardYE, SrcYE);
mux3 #(64) fzemux(FRD3E, FPUResult64W, FResM, ForwardZE, SrcZE);
2021-07-02 16:40:58 +00:00
// first of two-stage instance of floating-point fused multiply-add unit
fma fma (.clk, .reset, .FlushM, .StallM,
.SrcXE, .SrcYE, .SrcZE, .SrcXM, .SrcYM, .SrcZM,
.FOpCtrlE(FOpCtrlE[2:0]), .FOpCtrlM(FOpCtrlM[2:0]),
.FmtE, .FmtM, .FrmM, .FMAFlgM, .FMAResM);
// first and only instance of floating-point divider
logic fpdivClk;
clockgater fpdivclkg(.E(FDivStartE),
.SE(1'b0),
.CLK(clk),
.ECLK(fpdivClk));
// capture the inputs for div/sqrt
flopenrc #(64) reg_input1 (.d(SrcXE), .q(DivInput1E),
.en(~HoldInputs), .clear(FDivSqrtDoneE),
.reset(reset), .clk(clk));
flopenrc #(64) reg_input2 (.d(SrcYE), .q(DivInput2E),
.en(~HoldInputs), .clear(FDivSqrtDoneE),
.reset(reset), .clk(clk));
fdivsqrt fdivsqrt (.DivOpType(FOpCtrlE[0]), .clk(fpdivClk), .FmtE(~FmtE), .DivInput1E, .DivInput2E,
.FrmE, .DivOvEn(1'b1), .DivUnEn(1'b1), .FDivStartE, .FDivResultM, .FDivSqrtFlgM,
.FDivSqrtDoneE, .FDivBusyE, .HoldInputs, .reset);
2021-06-24 22:39:18 +00:00
// first of two-stage instance of floating-point add/cvt unit
faddcvt faddcvt (.clk, .reset, .FlushM, .StallM, .FrmM, .FOpCtrlM, .FmtE, .FmtM,
.SrcXE, .SrcYE, .FOpCtrlE, .FAddResM, .FAddFlgM);
// first and only instance of floating-point comparator
fcmp fcmp (SrcXE, SrcYE, FOpCtrlE[2:0], FmtE, CmpNVE, CmpResE);
// first and only instance of floating-point sign converter
fsgn fsgn (.SgnOpCodeE(FOpCtrlE[1:0]), .SrcXE, .SrcYE, .SgnResE, .SgnNVE);
// first and only instance of floating-point classify unit
fclassify fclassify (.SrcXE, .FmtE, .ClassResE);
2021-06-22 20:36:16 +00:00
fcvt fcvt (.X(SrcXE), .SrcAE, .FOpCtrlE, .FmtE, .FrmE, .CvtResE, .CvtFlgE);
// output for store instructions
assign FWriteDataE = FmtE ? SrcYE[63:64-`XLEN] : {{`XLEN-32{1'b0}}, SrcYE[63:32]};
//***swap to mux
2021-06-22 20:36:16 +00:00
2021-07-02 16:40:58 +00:00
//*****************
// E/M pipe registers
//*****************
flopenrc #(64) EMFpReg1(clk, reset, FlushM, ~StallM, SrcXE, SrcXM);
flopenrc #(64) EMFpReg2(clk, reset, FlushM, ~StallM, SrcYE, SrcYM);
flopenrc #(64) EMFpReg3(clk, reset, FlushM, ~StallM, SrcZE, SrcZM);
flopenrc #(1) EMRegCmp1(clk, reset, FlushM, ~StallM, CmpNVE, CmpNVM);
flopenrc #(64) EMRegCmp2(clk, reset, FlushM, ~StallM, CmpResE, CmpResM);
flopenrc #(64) EMRegSgn1(clk, reset, FlushM, ~StallM, SgnResE, SgnResM);
flopenrc #(1) EMRegSgn2(clk, reset, FlushM, ~StallM, SgnNVE, SgnNVM);
flopenrc #(64) EMRegCvt1(clk, reset, FlushM, ~StallM, CvtResE, CvtResM);
flopenrc #(5) EMRegCvt2(clk, reset, FlushM, ~StallM, CvtFlgE, CvtFlgM);
flopenrc #(22) EMCtrlReg(clk, reset, FlushM, ~StallM,
{FWriteEnE, FResultSelE, FResSelE, FIntResSelE, FrmE, FmtE, RdE, FOpCtrlE, FWriteIntE},
{FWriteEnM, FResultSelM, FResSelM, FIntResSelM, FrmM, FmtM, RdM, FOpCtrlM, FWriteIntM});
flopenrc #(64) EMRegClass(clk, reset, FlushM, ~StallM, ClassResE, ClassResM);
//BEGIN MEMORY STAGE
mux4 #(64) FResMux(AlignedSrcAM, SgnResM, CmpResM, CvtResM, FResSelM, FResM);
mux4 #(5) FFlgMux(5'b0, {4'b0, SgnNVM}, {4'b0, CmpNVM}, CvtFlgM, FResSelM, FFlgM);
//***change to mux
assign SrcXMAligned = FmtM ? SrcXM[63:64-`XLEN] : {{`XLEN-32{1'b0}}, SrcXM[63:32]};
mux4 #(`XLEN) IntResMux(CmpResM[`XLEN-1:0], SrcXMAligned, ClassResM[`XLEN-1:0], CvtResM[`XLEN-1:0], FIntResSelM, FIntResM);
// Align SrcA to MSB when single precicion
mux2 #(64) SrcAMux({SrcAM[31:0], 32'b0}, {{64-`XLEN{1'b0}}, SrcAM}, FmtM, AlignedSrcAM);
2021-07-02 16:40:58 +00:00
always_comb begin
case (FResultSelM)
3'b000 : SetFflagsM = 5'b0;
3'b001 : SetFflagsM = FMAFlgM;
3'b010 : SetFflagsM = FAddFlgM;
3'b011 : SetFflagsM = FDivSqrtFlgM;
3'b100 : SetFflagsM = FFlgM;
default : SetFflagsM = 5'bxxxxx;
endcase
end
//*****************
// M/W pipe registers
//*****************
flopenrc #(64) MWRegFma1(clk, reset, FlushW, ~StallW, FMAResM, FMAResW);
flopenrc #(64) MWRegDiv1(clk, reset, FlushW, ~StallW, FDivResultM, FDivResultW);
flopenrc #(64) MWRegAdd1(clk, reset, FlushW, ~StallW, FAddResM, FAddResW);
flopenrc #(64) MWRegCmp3(clk, reset, FlushW, ~StallW, CmpResM, CmpResW);
flopenrc #(64) MWRegClass2(clk, reset, FlushW, ~StallW, FResM, FResW);
flopenrc #(11) MWCtrlReg(clk, reset, FlushW, ~StallW,
{FWriteEnM, FResultSelM, RdM, FmtM, FWriteIntM},
{FWriteEnW, FResultSelW, RdW, FmtW, FWriteIntW});
//#########################################
// BEGIN WRITEBACK STAGE
//#########################################
always_comb begin
case (FResultSelW)
3'b000 : FPUResult64W = FmtW ? {ReadDataW, {64-`XLEN{1'b0}}} : {ReadDataW[31:0], 32'b0};
3'b001 : FPUResult64W = FMAResW;
3'b010 : FPUResult64W = FAddResW;
3'b011 : FPUResult64W = FDivResultW;
3'b100 : FPUResult64W = FResW;
default : FPUResult64W = 64'bxxxxx;
endcase
end
// interface between XLEN size datapath and double-precision sized
// floating-point results
//
// define offsets for LSB zero extension or truncation
always_comb begin
// zero extension
//***turn into mux
FPUResultW = FmtW ? FPUResult64W[63:64-`XLEN] : {{`XLEN-32{1'b0}}, FPUResult64W[63:32]};
end
end else begin // no F_SUPPORTED; tie outputs low
assign FStallD = 0;
assign FWriteIntE = 0;
assign FWriteIntM = 0;
assign FWriteIntW = 0;
assign FWriteDataE = 0;
assign FIntResM = 0;
assign FDivBusyE = 0;
assign IllegalFPUInstrD = 1;
assign SetFflagsM = 0;
assign FPUResultW = 0;
2021-06-01 19:45:32 +00:00
end
endgenerate
2021-06-01 19:45:32 +00:00
endmodule // fpu
2021-04-04 18:09:13 +00:00