cvw/src/uncore/ram_ahb.sv
2024-11-16 12:35:37 -08:00

111 lines
4.3 KiB
Systemverilog

///////////////////////////////////////////
// ram_ahb.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: On-chip RAM, external to core, with AHB interface
//
// Documentation: RISC-V System on Chip Design
//
// A component of the CORE-V-WALLY configurable RISC-V project.
// https://github.com/openhwgroup/cvw
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module ram_ahb import cvw::*; #(parameter cvw_t P,
parameter RANGE = 65535, PRELOAD = 0) (
input logic HCLK, HRESETn,
input logic HSELRam,
input logic [P.PA_BITS-1:0] HADDR,
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
input logic [P.XLEN-1:0] HWDATA,
input logic [P.XLEN/8-1:0] HWSTRB,
output logic [P.XLEN-1:0] HREADRam,
output logic HRESPRam, HREADYRam
);
localparam ADDR_WIDTH = $clog2(RANGE/8);
localparam OFFSET = $clog2(P.XLEN/8);
logic [P.XLEN/8-1:0] ByteMask;
logic [P.PA_BITS-1:0] HADDRD, RamAddr;
logic initTrans;
logic memwrite, memwriteD, memread;
logic nextHREADYRam;
logic DelayReady;
// a new AHB transactions starts when HTRANS requests a transaction,
// the peripheral is selected, and the previous transaction is completing
assign initTrans = HREADY & HSELRam & HTRANS[1] ;
assign memwrite = initTrans & HWRITE;
assign memread = initTrans & ~HWRITE;
flopenr #(1) memwritereg(HCLK, ~HRESETn, HREADY, memwrite, memwriteD);
flopenr #(P.PA_BITS) haddrreg(HCLK, ~HRESETn, HREADY, HADDR, HADDRD);
// Stall on a read after a write because the RAM can't take both adddresses on the same cycle
assign nextHREADYRam = (~(memwriteD & memread)) & ~DelayReady;
flopr #(1) readyreg(HCLK, ~HRESETn, nextHREADYRam, HREADYRam);
assign HRESPRam = 1'b0; // OK
// On writes or during a wait state, use address delayed by one cycle to sync RamAddr with HWDATA or hold stalled address
mux2 #(P.PA_BITS) adrmux(HADDR, HADDRD, memwriteD | ~HREADY, RamAddr);
// single-ported RAM
ram1p1rwbe #(P.USE_SRAM, RANGE/8, P.XLEN, PRELOAD) memory(.clk(HCLK), .ce(1'b1),
.addr(RamAddr[ADDR_WIDTH+OFFSET-1:OFFSET]), .we(memwriteD), .din(HWDATA), .bwe(HWSTRB), .dout(HREADRam));
// use this to add arbitrary latency to ram. Helps test AHB controller correctness
if(P.RAM_LATENCY > 0) begin
logic [7:0] NextCycle, Cycle;
logic CntEn, CntRst;
logic CycleFlag;
flopenr #(8) counter (HCLK, ~HRESETn | CntRst, CntEn, NextCycle, Cycle);
assign NextCycle = Cycle + 1'b1;
typedef enum logic {READY, DELAY} statetype;
statetype CurrState, NextState;
always_ff @(posedge HCLK)
if (~HRESETn) CurrState <= READY;
else CurrState <= NextState;
always_comb begin
case(CurrState)
READY: if(initTrans & ~CycleFlag) NextState = DELAY;
else NextState = READY;
DELAY: if(CycleFlag) NextState = READY;
else NextState = DELAY;
default: NextState = READY;
endcase
end
assign CycleFlag = Cycle == P.RAM_LATENCY[7:0];
assign CntEn = NextState == DELAY;
assign DelayReady = NextState == DELAY;
assign CntRst = NextState == READY;
end else begin
assign DelayReady = 1'b0;
end
endmodule