cvw/wally-pipelined/src/uncore/plic.sv

236 lines
10 KiB
Systemverilog
Raw Normal View History

2021-03-22 14:14:21 +00:00
///////////////////////////////////////////
// plic.sv
//
// Written: bbracker@hmc.edu 18 January 2021
// Modified:
//
// Purpose: Platform-Level Interrupt Controller
// Based on RISC-V spec (https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc)
// With clarifications from ROA's existing implementation (https://roalogic.github.io/plic/docs/AHB-Lite_PLIC_Datasheet.pdf)
// Supports only 1 target core and only a global threshold.
2021-03-22 14:14:21 +00:00
//
// *** Big questions:
// Do we detect requests as level-triggered or edge-trigged?
// If edge-triggered, do we want to allow 1 source to be able to make a number of repeated requests?
//
2021-03-22 14:14:21 +00:00
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module plic (
input logic HCLK, HRESETn,
input logic HSELPLIC,
2021-04-16 01:09:15 +00:00
input logic [27:0] HADDR, // *** could factor out entryd into HADDRd at the level of uncore
2021-03-22 14:14:21 +00:00
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
2021-03-22 14:14:21 +00:00
input logic [`XLEN-1:0] HWDATA,
2021-04-16 01:09:15 +00:00
input logic UARTIntr,GPIOIntr,
2021-03-22 14:14:21 +00:00
output logic [`XLEN-1:0] HREADPLIC,
output logic HRESPPLIC, HREADYPLIC,
output logic ExtIntM);
localparam N=`PLIC_NUM_SRC; // should not exceed 63; does not inlcude source 0, which does not connect to anything according to spec
2021-03-22 14:14:21 +00:00
2021-04-05 12:13:01 +00:00
logic memwrite, memread, initTrans;
2021-04-05 03:10:33 +00:00
logic [27:0] entry, entryd;
logic [31:0] Din, Dout;
logic [N:1] requests;
logic [2:0] intPriority[N:1];
2021-03-22 14:14:21 +00:00
logic [2:0] intThreshold;
logic [N:1] intPending, nextIntPending, intEn, intInProgress;
logic [5:0] intClaim; // ID's are 6 bits if we stay within 63 sources
logic [N:1] pendingArray[7:1];
logic [7:1] pendingPGrouped;
logic [7:1] pendingMaxP;
logic [N:1] pendingRequestsAtMaxP;
logic [7:1] threshMask;
2021-03-22 14:14:21 +00:00
// =======
2021-03-22 14:14:21 +00:00
// AHB I/O
// =======
2021-04-05 03:10:33 +00:00
assign entry = {HADDR[27:2],2'b0};
assign initTrans = HREADY & HSELPLIC & (HTRANS != 2'b00);
assign memread = initTrans & ~HWRITE;
// entryd and memwrite are delayed by a cycle because AHB controller waits a cycle before outputting write data
2021-04-05 03:10:33 +00:00
flopr #(1) memwriteflop(HCLK, ~HRESETn, initTrans & HWRITE, memwrite);
flopr #(28) entrydflop(HCLK, ~HRESETn, entry, entryd);
2021-03-22 14:14:21 +00:00
assign HRESPPLIC = 0; // OK
2021-04-05 03:10:33 +00:00
assign HREADYPLIC = 1'b1; // PLIC never takes >1 cycle to respond
2021-04-05 03:10:33 +00:00
// account for subword read/write circuitry
// -- Note PLIC registers are 32 bits no matter what; access them with LW SW.
generate
2021-04-05 03:10:33 +00:00
if (`XLEN == 64) begin
always_comb
if (entryd[2]) begin
Din = HWDATA[63:32];
HREADPLIC = {Dout,32'b0};
end else begin
Din = HWDATA[31:0];
HREADPLIC = {32'b0,Dout};
end
end else begin // 32-bit
always_comb begin
Din = HWDATA[31:0];
HREADPLIC = Dout;
end
end
endgenerate
// ==================
// Register Interface
// ==================
always @(posedge HCLK,negedge HRESETn) begin
// resetting
if (~HRESETn) begin
2021-04-24 13:32:09 +00:00
intPriority <= #1 '{default:3'b0};
intEn <= #1 {N{1'b0}};
intThreshold <= #1 3'b0;
intInProgress <= #1 {N{1'b0}};
// writing
2021-04-30 10:26:31 +00:00
end else begin
if (memwrite)
casez(entryd)
28'hc0000??: intPriority[entryd[7:2]] <= #1 Din[2:0];
`ifdef PLIC_NUM_SRC_LT_32
28'hc002000: intEn[N:1] <= #1 Din[N:1];
`endif
`ifndef PLIC_NUM_SRC_LT_32
28'hc002000: intEn[31:1] <= #1 Din[31:1];
28'hc002004: intEn[N:32] <= #1 Din[31:0];
`endif
28'hc200000: intThreshold[2:0] <= #1 Din[2:0];
28'hc200004: intInProgress <= #1 intInProgress & ~(1'b1 << (Din[5:0]-1)); // lower "InProgress" to signify completion
endcase
// reading
if (memread)
casez(entry)
28'hc0000??: Dout <= #1 {{(`XLEN-3){1'b0}},intPriority[entry[7:2]]};
`ifdef PLIC_NUM_SRC_LT_32
28'hc001000: Dout <= #1 {{(31-N){1'b0}},intPending[N:1],1'b0};
28'hc002000: Dout <= #1 {{(31-N){1'b0}},intEn[N:1],1'b0};
`endif
`ifndef PLIC_NUM_SRC_LT_32
28'hc001000: Dout <= #1 {intPending[31:1],1'b0};
28'hc001004: Dout <= #1 {{(63-N){1'b0}},intPending[N:32]};
28'hc002000: Dout <= #1 {intEn[31:1],1'b0};
28'hc002004: Dout <= #1 {{(63-N){1'b0}},intEn[N:32]};
`endif
28'hc200000: Dout <= #1 {29'b0,intThreshold[2:0]};
28'hc200004: begin
Dout <= #1 {26'b0,intClaim};
intInProgress <= #1 intInProgress | (1'b1 << (intClaim-1)); // claimed requests are currently in progress of being serviced until they are completed
end
default: Dout <= #1 32'hdeadbeef; // invalid access
endcase
else
Dout <= #1 32'h0;
end
end
2021-03-22 14:14:21 +00:00
// connect sources to requests
2021-04-16 01:09:15 +00:00
always_comb begin
requests = {N{1'b0}};
`ifdef PLIC_GPIO_ID
requests[`PLIC_GPIO_ID] = GPIOIntr;
`endif
`ifdef PLIC_UART_ID
requests[`PLIC_UART_ID] = UARTIntr;
`endif
end
2021-04-05 12:13:01 +00:00
// pending updates
// *** verify that this matches the expectations of the things that make requests (in terms of timing, edge-triggered vs level-triggered)
assign nextIntPending = (intPending | (requests & ~intInProgress)) // requests should raise intPending except when their service routine is already in progress
& ~(((entry == 28'hc200004) && memread) << (intClaim-1)); // clear pending bit when claim register is read
flopr #(N) intPendingFlop(HCLK,~HRESETn,nextIntPending,intPending);
// pending array - indexed by priority_lvl x source_ID
genvar i;
2021-03-22 14:14:21 +00:00
generate
for (i=1; i<=N; i=i+1) begin
// *** make sure that this synthesizes into N decoders, not 7*N 3-bit equality comparators (right?)
assign pendingArray[7][i] = (intPriority[i]==7) & intEn[i] & intPending[i];
assign pendingArray[6][i] = (intPriority[i]==6) & intEn[i] & intPending[i];
assign pendingArray[5][i] = (intPriority[i]==5) & intEn[i] & intPending[i];
assign pendingArray[4][i] = (intPriority[i]==4) & intEn[i] & intPending[i];
assign pendingArray[3][i] = (intPriority[i]==3) & intEn[i] & intPending[i];
assign pendingArray[2][i] = (intPriority[i]==2) & intEn[i] & intPending[i];
assign pendingArray[1][i] = (intPriority[i]==1) & intEn[i] & intPending[i];
2021-03-22 14:14:21 +00:00
end
endgenerate
// pending array, except grouped by priority
assign pendingPGrouped[7:1] = {|pendingArray[7],
|pendingArray[6],
|pendingArray[5],
|pendingArray[4],
|pendingArray[3],
|pendingArray[2],
|pendingArray[1]};
// pendingPGrouped, except only topmost priority is active
assign pendingMaxP[7:1] = {pendingPGrouped[7],
pendingPGrouped[6] & ~|pendingPGrouped[7],
pendingPGrouped[5] & ~|pendingPGrouped[7:6],
pendingPGrouped[4] & ~|pendingPGrouped[7:5],
pendingPGrouped[3] & ~|pendingPGrouped[7:4],
pendingPGrouped[2] & ~|pendingPGrouped[7:3],
pendingPGrouped[1] & ~|pendingPGrouped[7:2]};
// select the pending requests at that priority
assign pendingRequestsAtMaxP[N:1] = ({N{pendingMaxP[7]}} & pendingArray[7])
| ({N{pendingMaxP[6]}} & pendingArray[6])
| ({N{pendingMaxP[5]}} & pendingArray[5])
| ({N{pendingMaxP[4]}} & pendingArray[4])
| ({N{pendingMaxP[3]}} & pendingArray[3])
| ({N{pendingMaxP[2]}} & pendingArray[2])
| ({N{pendingMaxP[1]}} & pendingArray[1]);
// find the lowest ID amongst active interrupts at the highest priority
integer j;
// *** verify that this synthesizes to a reasonable priority encoder and that j doesn't actually exist in hardware
always_comb begin
intClaim = 6'b0;
for(j=N; j>0; j=j-1) begin
if(pendingRequestsAtMaxP[j]) intClaim = j;
end
end
// create threshold mask
// *** I think this commented out version would be nice, but linter complains about circular logic
//assign threshMask[7:1] = {~(7==intThreshold),
// ~(6==intThreshold) & threshMask[7],
// ~(5==intThreshold) & threshMask[6],
// ~(4==intThreshold) & threshMask[5],
// ~(3==intThreshold) & threshMask[4],
// ~(2==intThreshold) & threshMask[3],
// ~(1==intThreshold) & threshMask[2]};
// *** verify that this alternate version does not synthesize to 7 separate comparators
assign threshMask[7:1] = {(7>intThreshold),
(6>intThreshold),
(5>intThreshold),
(4>intThreshold),
(3>intThreshold),
(2>intThreshold),
(1>intThreshold)};
// is the max priority > threshold?
// *** would it be any better to first priority encode maxPriority into binary and then ">" with threshold?
assign ExtIntM = |(threshMask & pendingPGrouped);
2021-03-22 14:14:21 +00:00
endmodule