cvw/wally-pipelined/src/privileged/csrc.sv

517 lines
26 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
// csrc.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Counter CSRs
// See RISC-V Privileged Mode Specification 20190608 3.1.10-11
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
// Ben 06/17/21: I brought in MTIME, MTIMECMP from CLINT. *** this probably isn't perfect though because it doesn't yet provide the ability to change these through CSR writes; overall this whole thing might need some rethinking
module csrc #(parameter
MCYCLE = 12'hB00,
MTIME = 12'hB01, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
MTIMECMP = 12'hB21, // not specified in privileged spec. Move to CLINT
MINSTRET = 12'hB02,
MHPMCOUNTERBASE = 12'hB00,
//MHPMCOUNTER3 = 12'hB03,
//MHPMCOUNTER4 = 12'hB04,
// ... more counters
//MHPMCOUNTER31 = 12'hB1F,
MCYCLEH = 12'hB80,
MTIMEH = 12'hB81, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
MTIMECMPH = 12'hBA1, // not specified in privileged spec. Move to CLINT
MINSTRETH = 12'hB82,
MHPMCOUNTERHBASE = 12'hB80,
//MHPMCOUNTER3H = 12'hB83,
//MHPMCOUNTER4H = 12'hB84,
// ... more counters
//MHPMCOUNTER31H = 12'hB9F,
MCOUNTERINHIBIT = 12'h320,
MHPMEVENTBASE = 12'h320,
//MHPMEVENT3 = 12'h323,
//MHPMEVENT4 = 12'h324,
// ... more counters
//MHPMEVENT31 = 12'h33F,
CYCLE = 12'hC00,
TIME = 12'hC01,
INSTRET = 12'hC02,
HPMCOUNTERBASE = 12'hC00,
//HPMCOUNTER3 = 12'hC03,
//HPMCOUNTER4 = 12'hC04,
// ...more counters
//HPMCOUNTER31 = 12'hC1F,
CYCLEH = 12'hC80,
TIMEH = 12'hC81, // not specified
INSTRETH = 12'hC82,
HPMCOUNTERHBASE = 12'hC80
//HPMCOUNTER3H = 12'hC83,
//HPMCOUNTER4H = 12'hC84,
// ... more counters
//HPMCOUNTER31H = 12'hC9F
) (
input logic clk, reset,
input logic StallD, StallE, StallM, StallW,
input logic InstrValidM, LoadStallD, CSRMWriteM,
input logic BPPredDirWrongM,
input logic BTBPredPCWrongM,
input logic RASPredPCWrongM,
input logic BPPredClassNonCFIWrongM,
input logic [4:0] InstrClassM,
input logic DCacheMiss,
input logic DCacheAccess,
input logic [11:0] CSRAdrM,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] CSRWriteValM,
input logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW,
input logic [63:0] MTIME_CLINT, MTIMECMP_CLINT,
output logic [`XLEN-1:0] CSRCReadValM,
output logic IllegalCSRCAccessM
);
generate
if (`ZCOUNTERS_SUPPORTED) begin
// logic [63:0] TIME_REGW, TIMECMP_REGW;
logic [63:0] CYCLE_REGW, INSTRET_REGW;
logic [63:0] HPMCOUNTER3_REGW, HPMCOUNTER4_REGW; // add more performance counters here if desired
logic [63:0] CYCLEPlusM, INSTRETPlusM;
logic [63:0] HPMCOUNTER3PlusM, HPMCOUNTER4PlusM;
// logic [`XLEN-1:0] NextTIMEM;
logic [`XLEN-1:0] NextCYCLEM, NextINSTRETM;
logic [`XLEN-1:0] NextHPMCOUNTER3M, NextHPMCOUNTER4M;
logic WriteCYCLEM, WriteINSTRETM;
logic WriteHPMCOUNTER3M, WriteHPMCOUNTER4M;
logic [4:0] CounterNumM;
logic [`COUNTERS-1:3][`XLEN-1:0] HPMCOUNTER_REGW, HPMCOUNTERH_REGW;
//logic [`COUNTERS-1:3][`XLEN-1:0] HPMCOUNTERH_REGW;
// Write enables
// assign WriteTIMEM = CSRMWriteM && (CSRAdrM == MTIME);
// assign WriteTIMECMPM = CSRMWriteM && (CSRAdrM == MTIMECMP);
assign WriteCYCLEM = CSRMWriteM && (CSRAdrM == MCYCLE);
assign WriteINSTRETM = CSRMWriteM && (CSRAdrM == MINSTRET);
//assign WriteHPMCOUNTER3M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3);
//assign WriteHPMCOUNTER4M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4);
// Counter adders with inhibits for power savings
assign CYCLEPlusM = CYCLE_REGW + {63'b0, ~MCOUNTINHIBIT_REGW[0]};
//assign TIMEPlusM = TIME_REGW + 1; // can't be inhibited
assign INSTRETPlusM = INSTRET_REGW + {63'b0, InstrValidM & ~StallW & ~MCOUNTINHIBIT_REGW[2]};
//assign HPMCOUNTER3PlusM = HPMCOUNTER3_REGW + {63'b0, LoadStallD & ~MCOUNTINHIBIT_REGW[3]}; // count load stalls
//assign HPMCOUNTER4PlusM = HPMCOUNTER4_REGW + {63'b0, 1'b0 & ~MCOUNTINHIBIT_REGW[4]}; // change to count signals
assign NextCYCLEM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[`XLEN-1:0];
//assign NextTIMEM = WriteTIMEM ? CSRWriteValM : TIMEPlusM[`XLEN-1:0];
assign NextINSTRETM = WriteINSTRETM ? CSRWriteValM : INSTRETPlusM[`XLEN-1:0];
//assign NextHPMCOUNTER3M = WriteHPMCOUNTER3M ? CSRWriteValM : HPMCOUNTER3PlusM[`XLEN-1:0];
//assign NextHPMCOUNTER4M = WriteHPMCOUNTER4M ? CSRWriteValM : HPMCOUNTER4PlusM[`XLEN-1:0];
// parameterized number of additional counters
if (`COUNTERS > 3) begin
2021-06-10 15:18:58 +00:00
logic [`COUNTERS-1:3] WriteHPMCOUNTERM;
logic [`COUNTERS-1:0] CounterEvent;
logic [63:0] /*HPMCOUNTER_REGW[`COUNTERS-1:3], */ HPMCOUNTERPlusM[`COUNTERS-1:3];
logic [`XLEN-1:0] NextHPMCOUNTERM[`COUNTERS-1:3];
genvar i;
2021-06-10 15:18:58 +00:00
// could replace special counters 0-2 with this loop for all counters
assign CounterEvent[0] = 1'b1;
assign CounterEvent[1] = 1'b0;
assign CounterEvent[2] = InstrValidM & ~StallW;
2021-06-10 15:18:58 +00:00
assign CounterEvent[3] = LoadStallD & ~StallD;
assign CounterEvent[4] = BPPredDirWrongM & ~StallM;
assign CounterEvent[5] = InstrClassM[0] & ~StallM;
assign CounterEvent[6] = BTBPredPCWrongM & ~StallM;
assign CounterEvent[7] = (InstrClassM[4] | InstrClassM[2] | InstrClassM[1]) & ~StallM;
assign CounterEvent[8] = RASPredPCWrongM & ~StallM;
assign CounterEvent[9] = InstrClassM[3] & ~StallM;
assign CounterEvent[10] = BPPredClassNonCFIWrongM & ~StallM;
assign CounterEvent[11] = DCacheAccess & ~StallM;
assign CounterEvent[12] = DCacheMiss & ~StallM;
assign CounterEvent[`COUNTERS-1:13] = 0; // eventually give these sources, including FP instructions, I$/D$ misses, branches and mispredictions
for (i = 3; i < `COUNTERS; i = i+1) begin
assign WriteHPMCOUNTERM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERBASE + i);
assign NextHPMCOUNTERM[i][`XLEN-1:0] = WriteHPMCOUNTERM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][`XLEN-1:0];
always @(posedge clk, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 0;
2021-06-10 15:18:58 +00:00
else if (~StallW) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERM[i];
//flopr #(`XLEN) HPMCOUNTERreg[i](clk, reset, NextHPMCOUNTERM[i], HPMCOUNTER_REGW[i]);
if (`XLEN==32) begin
logic [`COUNTERS-1:3] WriteHPMCOUNTERHM;
logic [`XLEN-1:0] NextHPMCOUNTERHM[`COUNTERS-1:3];
assign HPMCOUNTERPlusM[i] = {HPMCOUNTERH_REGW[i], HPMCOUNTER_REGW[i]} + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
assign WriteHPMCOUNTERHM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERHBASE + i);
assign NextHPMCOUNTERHM[i] = WriteHPMCOUNTERHM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][63:32];
always @(posedge clk, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 0;
2021-06-10 15:18:58 +00:00
else if (~StallW) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERHM[i];
//flopr #(`XLEN) HPMCOUNTERHreg[i](clk, reset, NextHPMCOUNTERHM[i], HPMCOUNTER_REGW[i][63:32]);
end else begin
assign HPMCOUNTERPlusM[i] = HPMCOUNTER_REGW[i] + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
end
end
end
// Write / update counters
// Only the Machine mode versions of the counter CSRs are writable
if (`XLEN==64) begin// 64-bit counters
// flopr #(64) TIMEreg(clk, reset, WriteTIMEM ? CSRWriteValM : TIME_REGW + 1, TIME_REGW); // may count off a different clock***
// flopenr #(64) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW);
flopr #(64) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW);
flopr #(64) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW);
//flopr #(64) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW);
//flopr #(64) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW);
end else begin // 32-bit low and high counters
logic WriteTIMEHM, WriteTIMECMPHM, WriteCYCLEHM, WriteINSTRETHM;
//logic WriteHPMCOUNTER3HM, WriteHPMCOUNTER4HM;
logic [`XLEN-1:0] NextCYCLEHM, NextTIMEHM, NextINSTRETHM;
//logic [`XLEN-1:0] NextHPMCOUNTER3HM, NextHPMCOUNTER4HM;
// Write Enables
// assign WriteTIMEHM = CSRMWriteM && (CSRAdrM == MTIMEH);
// assign WriteTIMECMPHM = CSRMWriteM && (CSRAdrM == MTIMECMPH);
assign WriteCYCLEHM = CSRMWriteM && (CSRAdrM == MCYCLEH);
assign WriteINSTRETHM = CSRMWriteM && (CSRAdrM == MINSTRETH);
//assign WriteHPMCOUNTER3HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3H);
//assign WriteHPMCOUNTER4HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4H);
assign NextCYCLEHM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[63:32];
// assign NextTIMEHM = WriteTIMEHM ? CSRWriteValM : TIMEPlusM[63:32];
assign NextINSTRETHM = WriteINSTRETHM ? CSRWriteValM : INSTRETPlusM[63:32];
//assign NextHPMCOUNTER3HM = WriteHPMCOUNTER3HM ? CSRWriteValM : HPMCOUNTER3PlusM[63:32];
//assign NextHPMCOUNTER4HM = WriteHPMCOUNTER4HM ? CSRWriteValM : HPMCOUNTER4PlusM[63:32];
// Counter CSRs
// flopr #(32) TIMEreg(clk, reset, NextTIMEM, TIME_REGW); // may count off a different clock***
// flopenr #(32) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW[31:0]);
flopr #(32) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW[31:0]);
flopr #(32) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW[31:0]);
//flopr #(32) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW[31:0]);
//flopr #(32) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW[31:0]);
// flopr #(32) TIMEHreg(clk, reset, NextTIMEHM, TIME_REGW); // may count off a different clock***
// flopenr #(32) TIMECMPHreg(clk, reset, WriteTIMECMPHM, CSRWriteValM, TIMECMP_REGW[63:32]);
flopr #(32) CYCLEHreg(clk, reset, NextCYCLEHM, CYCLE_REGW[63:32]);
flopr #(32) INSTRETHreg(clk, reset, NextINSTRETHM, INSTRET_REGW[63:32]);
//flopr #(32) HPMCOUNTER3Hreg(clk, reset, NextHPMCOUNTER3HM, HPMCOUNTER3_REGW[63:32]);
//flopr #(32) HPMCOUNTER4Hreg(clk, reset, NextHPMCOUNTER4HM, HPMCOUNTER4_REGW[63:32]);
end
// eventually move TIME and TIMECMP to the CLINT -- Ben 06/17/21: sure let's give that a shot!
// run TIME off asynchronous reference clock
// synchronize write enable to TIME
// four phase handshake to synchronize reads from TIME
// interrupt on timer compare
// ability to disable optional CSRs
// Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags
assign CounterNumM = CSRAdrM[4:0]; // which counter to read?
if (`XLEN==64) // 64-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE];
else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE];
else case (CSRAdrM)
MTIME: CSRCReadValM = MTIME_CLINT;
MTIMECMP: CSRCReadValM = MTIMECMP_CLINT;
MCYCLE: CSRCReadValM = CYCLE_REGW;
MINSTRET: CSRCReadValM = INSTRET_REGW;
//MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW;
//MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW;
TIME: CSRCReadValM = MTIME_CLINT;
CYCLE: CSRCReadValM = CYCLE_REGW;
INSTRET: CSRCReadValM = INSTRET_REGW;
//HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW;
//HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW;
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
end
else // 32-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE];
else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE];
else if (CSRAdrM >= MHPMCOUNTERHBASE+3 && CSRAdrM < MHPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-MHPMCOUNTERHBASE];
else if (CSRAdrM >= HPMCOUNTERHBASE+3 && CSRAdrM < HPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-HPMCOUNTERHBASE];
else case (CSRAdrM)
MTIME: CSRCReadValM = MTIME_CLINT[31:0];
MTIMECMP: CSRCReadValM = MTIMECMP_CLINT[31:0];
MCYCLE: CSRCReadValM = CYCLE_REGW[31:0];
MINSTRET: CSRCReadValM = INSTRET_REGW[31:0];
//MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0];
//MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0];
TIME: CSRCReadValM = MTIME_CLINT[31:0];
CYCLE: CSRCReadValM = CYCLE_REGW[31:0];
INSTRET: CSRCReadValM = INSTRET_REGW[31:0];
//HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0];
//HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0];
MTIMEH: CSRCReadValM = MTIME_CLINT[63:32];
MTIMECMPH: CSRCReadValM = MTIMECMP_CLINT[63:32];
MCYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
MINSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
//MHPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32];
//MHPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32];
TIMEH: CSRCReadValM = MTIME_CLINT[63:32];
CYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
INSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
//HPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32];
//HPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32];
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
end
end else begin
assign CSRCReadValM = 0;
assign IllegalCSRCAccessM = 1;
end
endgenerate
endmodule
/* Bad code from class
2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// csrc.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
2021-03-04 16:40:18 +00:00
// Modified:ssanghai@hmc.edu 2nd March
// Added a configurable number of counters
// dottolia@hmc.edu 20 April 2021
// Make counters synthesizable
2021-01-15 04:37:51 +00:00
//
// Purpose: Counter CSRs
// See RISC-V Privileged Mode Specification 20190608 3.1.10-11
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
2021-01-15 04:37:51 +00:00
module csrc #(parameter
// counters
MHPMCOUNTERBASE = 12'hB00,
MHPMCOUNTERHBASE = 12'hB80,
MPHMEVENTBASE = 12'h320,
HPMCOUNTERBASE = 12'hC00,
HPMCOUNTERHBASE = 12'hC80,
)(input logic clk, reset,
input logic StallD, StallE, StallM, StallW,
input logic InstrValidM, LoadStallD, CSRMWriteM,
input logic BPPredDirWrongM,
input logic BTBPredPCWrongM,
input logic RASPredPCWrongM,
input logic BPPredClassNonCFIWrongM,
input logic [4:0] InstrClassM,
input logic [11:0] CSRAdrM,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] CSRWriteValM,
input logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW,
output logic [`XLEN-1:0] CSRCReadValM,
output logic IllegalCSRCAccessM);
2021-01-15 04:37:51 +00:00
// counters
2021-03-04 16:40:18 +00:00
// create Counter arrays to store address of each counter
integer MHPMCOUNTER [`COUNTERS:0];
integer MHPMCOUNTERH [`COUNTERS:0];
integer HPMCOUNTER [`COUNTERS:0];
integer HPMCOUNTERH [`COUNTERS:0];
integer MHPEVENT [`COUNTERS:0];
2021-01-15 04:37:51 +00:00
genvar i;
2021-06-10 00:58:20 +00:00
// *** this is totally incorrect. Fix parameterized counters dh 6/9/21
generate
for (i = 0; i <= `COUNTERS; i = i + 1) begin
if (i != 1) begin
always @(posedge reset) begin
MHPMCOUNTER[i] = 12'hB00 + i; // not sure this addition is legit
MHPMCOUNTERH[i] = 12'hB80 + i;
HPMCOUNTER[i] = 12'hC00 + i;
HPMCOUNTERH[i] = 12'hC80 + i;
MHPEVENT[i] = 12'h320 + i; // MHPEVENT[0] = MCOUNTERINHIBIT
end
2021-03-04 16:40:18 +00:00
end
end //end for loop
endgenerate
2021-01-15 04:37:51 +00:00
2021-03-04 16:40:18 +00:00
logic [`COUNTERS:0] MCOUNTEN;
assign MCOUNTEN[0] = 1'b1;
assign MCOUNTEN[1] = 1'b0;
assign MCOUNTEN[2] = InstrValidM & ~StallW;
assign MCOUNTEN[3] = LoadStallD & ~StallD;
assign MCOUNTEN[4] = BPPredDirWrongM & ~StallM;
assign MCOUNTEN[5] = InstrClassM[0] & ~StallM;
assign MCOUNTEN[6] = BTBPredPCWrongM & ~StallM;
assign MCOUNTEN[7] = (InstrClassM[4] | InstrClassM[2] | InstrClassM[1]) & ~StallM;
assign MCOUNTEN[8] = RASPredPCWrongM & ~StallM;
assign MCOUNTEN[9] = InstrClassM[3] & ~StallM;
assign MCOUNTEN[10] = BPPredClassNonCFIWrongM & ~StallM;
assign MCOUNTEN[`COUNTERS:11] = 0;
2021-01-15 04:37:51 +00:00
2021-03-04 16:40:18 +00:00
genvar j;
generate
if (`ZCOUNTERS_SUPPORTED) begin
logic [`COUNTERS:0][63:0] HPMCOUNTER_REGW;
logic [`COUNTERS:0][63:0] HPMCOUNTERPlusM;
logic [`COUNTERS:0][`XLEN-1:0] NextHPMCOUNTERM;
logic [`COUNTERS:0] WriteHPMCOUNTERM;
logic [4:0] CounterNumM;
2021-01-15 04:37:51 +00:00
2021-03-04 17:59:45 +00:00
assign CounterNumM = CSRAdrM[4:0]; // which counter to read? ***
2021-03-04 16:40:18 +00:00
for (j=0; j<= `COUNTERS; j = j+1) begin
// Write enables
if (j != 1) begin
2021-03-04 16:40:18 +00:00
assign WriteHPMCOUNTERM[j] = CSRMWriteM && (CSRAdrM == MHPMCOUNTER[j]);
// Count Signals
assign HPMCOUNTERPlusM[j] = HPMCOUNTER_REGW[j] + {63'b0, MCOUNTEN[j] & ~MCOUNTINHIBIT_REGW[j]};
assign NextHPMCOUNTERM[j] = WriteHPMCOUNTERM[j] ? CSRWriteValM : HPMCOUNTERPlusM[j][`XLEN-1:0];
end
2021-01-15 04:37:51 +00:00
2021-03-04 16:40:18 +00:00
// Write / update counters
// Only the Machine mode versions of the counter CSRs are writable
if (`XLEN==64) begin // 64-bit counters
flopenr #(64) HPMCOUNTERreg_j(clk, reset, ~StallW, NextHPMCOUNTERM[j], HPMCOUNTER_REGW[j]);
2021-03-04 16:40:18 +00:00
end
else begin // 32-bit low and high counters
logic [`COUNTERS:0] WriteHPMCOUNTERHM;
logic [`COUNTERS:0] [`XLEN-1:0] NextHPMCOUNTERHM;
2021-01-15 04:37:51 +00:00
2021-03-04 16:40:18 +00:00
// Write Enables
assign WriteHPMCOUNTERHM[j] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERH[j]);
assign NextHPMCOUNTERHM[j] = WriteHPMCOUNTERHM[j] ? CSRWriteValM : HPMCOUNTERPlusM[j][63:32];
2021-01-15 04:37:51 +00:00
2021-03-04 16:40:18 +00:00
// Counter CSRs
flopenr #(32) HPMCOUNTERreg_j(clk, reset, ~StallW, NextHPMCOUNTERM[j], HPMCOUNTER_REGW[j][31:0]);
flopenr #(32) HPMCOUNTERHreg_j(clk, reset, ~StallW, NextHPMCOUNTERHM[j], HPMCOUNTER_REGW[j][63:32]);
2021-01-15 04:37:51 +00:00
end
2021-03-04 17:59:45 +00:00
end // end for
// eventually move TIME and TIMECMP to the CLINT
// run TIME off asynchronous reference clock
// synchronize write enable to TIME
// four phase handshake to synchronize reads from TIME
// interrupt on timer compare
// ability to disable optional CSRs
// Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags
if (`XLEN==64) begin // 64-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
2021-03-04 16:40:18 +00:00
2021-03-04 17:59:45 +00:00
if (CSRAdrM[11:5] == MHPMCOUNTER[0][11:5] || CSRAdrM[11:5] == HPMCOUNTER[0][11:5]) begin
CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM[4:0]];
IllegalCSRCAccessM = 0;
2021-03-04 16:40:18 +00:00
end
2021-03-04 17:59:45 +00:00
// //case (CSRAdrM)
// MHPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j];
// HPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j];
// default: begin
// CSRCReadValM = 0;
// IllegalCSRCAccessM = 1;
// end
// endcase
// end
2021-03-04 16:40:18 +00:00
else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
2021-03-04 17:59:45 +00:00
end
end
else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
2021-01-15 04:37:51 +00:00
end
2021-03-04 17:59:45 +00:00
end
else begin // 32-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
if (CSRAdrM[11:5] == MHPMCOUNTER[0][11:5] || CSRAdrM[11:5] == HPMCOUNTER[0][11:5] ||
CSRAdrM[11:5] == MHPMCOUNTERH[0][11:5] || CSRAdrM[11:5] == HPMCOUNTERH[0][11:5]) begin
CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM[4:0]];
IllegalCSRCAccessM = 0;
2021-03-04 16:40:18 +00:00
end
2021-03-04 17:59:45 +00:00
2021-03-04 16:40:18 +00:00
else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
2021-03-04 17:59:45 +00:00
end
// IllegalCSRCAccessM = 0;
// case (CSRAdrM)
// MHPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j][31:0];
// HPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j][31:0];
// MHPMCOUNTERH[j]: CSRCReadValM = HPMCOUNTER_REGW[j][63:32];
// HPMCOUNTERH[j]: CSRCReadValM = HPMCOUNTER_REGW[j][63:32];
// default: begin
// CSRCReadValM = 0;
// IllegalCSRCAccessM = 1;
// end
// endcase
end
else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
end
end // 32-bit counter end
end // end for big if
2021-03-04 16:40:18 +00:00
else begin
2021-03-04 17:59:45 +00:00
assign CSRCReadValM = 0;
assign IllegalCSRCAccessM = 1;
2021-03-04 16:40:18 +00:00
end // end for else
endgenerate
2021-01-15 04:37:51 +00:00
endmodule
*/