cvw/pipelined/src/uncore/ram.sv

128 lines
4.6 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// ram.sv
2021-01-15 04:37:51 +00:00
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: On-chip RAM, external to core
2021-01-15 04:37:51 +00:00
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
2021-01-15 04:37:51 +00:00
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
2021-01-15 04:37:51 +00:00
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
2021-01-15 04:37:51 +00:00
`include "wally-config.vh"
2021-01-15 04:37:51 +00:00
module ram #(parameter BASE=0, RANGE = 65535) (
2021-01-30 05:56:12 +00:00
input logic HCLK, HRESETn,
input logic HSELRam,
2021-03-05 19:24:22 +00:00
input logic [31:0] HADDR,
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
2021-03-05 19:24:22 +00:00
input logic [`XLEN-1:0] HWDATA,
input logic [3:0] HSIZED,
output logic [`XLEN-1:0] HREADRam,
output logic HRESPRam, HREADYRam
2021-01-30 04:43:48 +00:00
);
2021-01-15 04:37:51 +00:00
2022-03-31 20:48:15 +00:00
// Desired changes.
// 1. find a way to merge read and write address into 1 port.
// 2. remove all unnecessary latencies. (HREADY needs to be able to constant high.)
// 3. implement burst.
// 4. remove the configurable latency.
2022-03-30 16:09:21 +00:00
logic [`XLEN/8-1:0] ByteMaskM;
logic [31:0] HWADDR, A;
logic prevHREADYRam, risingHREADYRam;
logic initTrans;
logic memwrite;
logic [3:0] busycount;
2022-04-18 03:18:38 +00:00
swbytemask swbytemask(.Size(HSIZED[1:0]), .Adr(HWADDR[2:0]), .ByteMask(ByteMaskM));
2021-03-05 19:24:22 +00:00
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00);
2021-01-30 06:43:49 +00:00
// *** this seems like a weird way to use reset
flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELRam & HWRITE, memwrite);
flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A);
2022-06-08 01:39:44 +00:00
2021-01-30 06:43:49 +00:00
// busy FSM to extend READY signal
2022-03-30 16:09:21 +00:00
always @(posedge HCLK, negedge HRESETn)
2021-01-30 06:43:49 +00:00
if (~HRESETn) begin
busycount <= 0;
HREADYRam <= #1 0;
2021-01-30 06:43:49 +00:00
end else begin
if (initTrans) begin
2021-01-30 06:43:49 +00:00
busycount <= 0;
HREADYRam <= #1 0;
end else if (~HREADYRam) begin
if (busycount == 0) begin // Ram latency, for testing purposes. *** test with different values such as 2
HREADYRam <= #1 1;
2021-02-08 04:21:55 +00:00
end else begin
2021-02-02 19:22:12 +00:00
busycount <= busycount + 1;
2021-02-08 04:21:55 +00:00
end
2021-01-30 06:43:49 +00:00
end
2021-02-15 15:10:50 +00:00
end
assign HRESPRam = 0; // OK
2022-03-30 16:09:21 +00:00
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
// Rising HREADY edge detector
// Indicates when ram is finishing up
// Needed because HREADY may go high for other reasons,
// and we only want to write data when finishing up.
2022-03-30 16:09:21 +00:00
flopenr #(1) prevhreadyRamreg(HCLK,~HRESETn, 1'b1, HREADYRam,prevHREADYRam);
assign risingHREADYRam = HREADYRam & ~prevHREADYRam;
2021-02-08 04:21:55 +00:00
2022-03-30 16:09:21 +00:00
always @(posedge HCLK)
HWADDR <= #1 A;
2021-02-15 15:10:50 +00:00
2022-03-30 16:09:21 +00:00
bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH, `FPGA)
2022-06-08 01:39:44 +00:00
memory(.clk(HCLK), .reA(1'b1),
2022-03-30 16:09:21 +00:00
.addrA(A[ADDR_WDITH+OFFSET-1:OFFSET]), .doutA(HREADRam),
2022-06-08 01:39:44 +00:00
.weB(memwrite & risingHREADYRam), .bweB(ByteMaskM),
2022-03-30 16:09:21 +00:00
.addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA));
2022-06-08 01:39:44 +00:00
/*
bram1p1r1w #(`XLEN/8, 8, ADDR_WDITH)
memory(.clk(HCLK), .we(memwrite), .bwe(ByteMaskM), . addr(A***), .dout(HREADRam), .din(HWDATA));
2022-03-30 16:09:21 +00:00
2022-06-08 01:39:44 +00:00
#(
//--------------------------------------------------------------------------
parameter NUM_COL = 8,
parameter COL_WIDTH = 8,
parameter ADDR_WIDTH = 10,
// Addr Width in bits : 2 *ADDR_WIDTH = RAM Depth
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
//----------------------------------------------------------------------
) (
input logic clk,
input logic ena,
input logic [NUM_COL-1:0] we,
input logic [ADDR_WIDTH-1:0] addr,
output logic [DATA_WIDTH-1:0] dout,
input logic [DATA_WIDTH-1:0] din
);*/
2022-03-30 16:09:21 +00:00
2021-01-15 04:37:51 +00:00
endmodule
2022-03-30 16:09:21 +00:00