cvw/pipelined/src/uncore/clint.sv

237 lines
9.3 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// clint.sv
//
// Written: David_Harris@hmc.edu 14 January 2021
// Modified:
//
// Purpose: Core-Local Interruptor
// See FE310-G002-Manual-v19p05 for specifications
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
2021-01-15 04:37:51 +00:00
module clint (
input logic HCLK, HRESETn, TIMECLK,
input logic HSELCLINT,
input logic [15:0] HADDR,
input logic HWRITE,
input logic [`XLEN-1:0] HWDATA,
2021-06-11 18:50:13 +00:00
input logic HREADY,
input logic [1:0] HTRANS,
output logic [`XLEN-1:0] HREADCLINT,
output logic HRESPCLINT, HREADYCLINT,
2021-12-31 06:40:21 +00:00
output logic [63:0] MTIME,
output logic TimerIntM, SwIntM);
2021-01-15 04:37:51 +00:00
logic MSIP;
2021-06-11 18:50:13 +00:00
logic [15:0] entry, entryd;
2021-10-23 18:24:36 +00:00
logic memwrite;
2021-06-11 18:50:13 +00:00
logic initTrans;
2021-12-31 06:40:21 +00:00
logic [63:0] MTIMECMP;
2021-06-11 18:50:13 +00:00
assign initTrans = HREADY & HSELCLINT & (HTRANS != 2'b00);
// entryd and memwrite are delayed by a cycle because AHB controller waits a cycle before outputting write data
flopr #(1) memwriteflop(HCLK, ~HRESETn, initTrans & HWRITE, memwrite);
flopr #(16) entrydflop(HCLK, ~HRESETn, entry, entryd);
2021-01-15 04:37:51 +00:00
2021-01-30 04:43:48 +00:00
assign HRESPCLINT = 0; // OK
assign HREADYCLINT = 1'b1; // *** needs to depend on DONE during accesses
2021-01-15 04:37:51 +00:00
// word aligned reads
2022-01-05 14:35:25 +00:00
if (`XLEN==64) assign #2 entry = {HADDR[15:3], 3'b000};
else assign #2 entry = {HADDR[15:2], 2'b00};
2021-01-15 04:37:51 +00:00
2021-02-22 18:48:30 +00:00
// DH 2/20/21: Eventually allow MTIME to run off a separate clock
// This will require synchronizing MTIME to the system clock
// before it is read or compared to MTIMECMP.
// It will also require synchronizing the write to MTIMECMP.
// Use req and ack signals synchronized across the clock domains.
2021-01-15 04:37:51 +00:00
// register access
2022-01-05 14:35:25 +00:00
if (`XLEN==64) begin:clint // 64-bit
always @(posedge HCLK) begin
case(entry)
16'h0000: HREADCLINT <= {63'b0, MSIP};
16'h4000: HREADCLINT <= MTIMECMP;
16'hBFF8: HREADCLINT <= MTIME;
default: HREADCLINT <= 0;
endcase
end
always_ff @(posedge HCLK or negedge HRESETn)
if (~HRESETn) begin
MSIP <= 0;
MTIMECMP <= 0;
// MTIMECMP is not reset
end else if (memwrite) begin
if (entryd == 16'h0000) MSIP <= HWDATA[0];
if (entryd == 16'h4000) MTIMECMP <= HWDATA;
end
2021-06-11 18:50:13 +00:00
// eventually replace MTIME logic below with timereg
2022-01-05 14:35:25 +00:00
// timereg tr(HCLK, HRESETn, TIMECLK, memwrite & (entryd==16'hBFF8), 1'b0, HWDATA, MTIME, done);
always_ff @(posedge HCLK or negedge HRESETn)
if (~HRESETn) begin
MTIME <= 0;
// MTIMECMP is not reset
end else if (memwrite & entryd == 16'hBFF8) begin
// MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed
MTIME <= HWDATA;
end else MTIME <= MTIME + 1;
end else begin:clint // 32-bit
always @(posedge HCLK) begin
case(entry)
16'h0000: HREADCLINT <= {31'b0, MSIP};
16'h4000: HREADCLINT <= MTIMECMP[31:0];
16'h4004: HREADCLINT <= MTIMECMP[63:32];
16'hBFF8: HREADCLINT <= MTIME[31:0];
16'hBFFC: HREADCLINT <= MTIME[63:32];
default: HREADCLINT <= 0;
endcase
end
2022-01-05 14:35:25 +00:00
always_ff @(posedge HCLK or negedge HRESETn)
if (~HRESETn) begin
MSIP <= 0;
MTIMECMP <= 0;
// MTIMECMP is not reset ***?
end else if (memwrite) begin
if (entryd == 16'h0000) MSIP <= HWDATA[0];
if (entryd == 16'h4000) MTIMECMP[31:0] <= HWDATA;
if (entryd == 16'h4004) MTIMECMP[63:32] <= HWDATA;
// MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed
end
// eventually replace MTIME logic below with timereg
// timereg tr(HCLK, HRESETn, TIMECLK, memwrite & (entryd==16'hBFF8), memwrite & (entryd == 16'hBFFC), HWDATA, MTIME, done);
always_ff @(posedge HCLK or negedge HRESETn)
if (~HRESETn) begin
MTIME <= 0;
// MTIMECMP is not reset
end else if (memwrite & (entryd == 16'hBFF8)) begin
MTIME[31:0] <= HWDATA;
end else if (memwrite & (entryd == 16'hBFFC)) begin
// MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed
MTIME[63:32]<= HWDATA;
end else MTIME <= MTIME + 1;
end
2021-01-15 04:37:51 +00:00
// Software interrupt when MSIP is set
assign SwIntM = MSIP;
// Timer interrupt when MTIME >= MTIMECMP
assign TimerIntM = ({1'b0, MTIME} >= {1'b0, MTIMECMP}); // unsigned comparison
endmodule
module timeregsync(
input logic clk, resetn,
input logic we0, we1,
input logic [`XLEN-1:0] wd,
output logic [63:0] q);
if (`XLEN==64)
always_ff @(posedge clk or negedge resetn)
if (~resetn) q <= 0;
else if (we0) q <= wd;
else q <= q + 1;
else
always_ff @(posedge clk or negedge resetn)
if (~resetn) q <= 0;
else if (we0) q[31:0] <= wd;
else if (we1) q[63:32] <= wd;
else q <= q + 1;
endmodule
module timereg(
input logic HCLK, HRESETn, TIMECLK,
input logic we0, we1,
input logic [`XLEN-1:0] HWDATA,
output logic [63:0] MTIME,
output logic done);
// if (`TIMEBASE_SYNC) begin:timereg // use HCLK for MTIME
if (1) begin:timereg // use HCLK for MTIME
timregsync timeregsync(.clk(HCLK), .resetn(HRESETn), .we0, .we1, .wd(HWDATA), .q(MTIME));
assign done = 1; // immediately completes
end else begin // use asynchronous TIMECLK
// TIME counter runs on TIMECLK but bus interface runs on HCLK
// Need to synchronize reads and writes
// This is subtle because synchronizing a binary counter on a per-bit basis could give a mix of old and new bits
// Instead, we use a Gray coded counter that only changes one bit per cycle
// Synchronizing this for a read is safe because we are guaranteed to get either the old or the new value.
// Writing to the counter requires a request/acknowledge handshake to ensure the write value is held long enough.
// The handshake signals are synchronized in each direction across the interface
// There is no back pressure on instructions, so if multiple counter writes occur ***
logic req, req_sync, ack, we0_stored, we1_stored, ack_stored, resetn_sync;
logic [`XLEN-1:0] wd_stored;
logic [63:0] time_int, time_int_gc, time_gc, MTIME_GC;
// When a write enable is asserted for a cycle, sample the enables and data and raise a request until it is acknowledged
// When the acknowledge falls, the transaction is done and the system is ready for another write.
// ***look at redoing this assuming write enable and data are held rather than pulsed.
always_ff @(posedge HCLK or negedge HRESETn)
if (~HRESETn)
req <= 0; // don't bother resetting wd
else begin
req <= we0 | we1 | req & ~ack;
we0_stored <= we0;
we1_stored <= we1;
wd_stored <= HWDATA;
ack_stored <= ack;
done <= ack_stored & ~ack;
end
// synchronize the reset and reqest into the TIMECLK domain
sync resetsync(TIMECLK, HRESETn, resetn_sync);
sync rsync(TIMECLK, req, req_sync);
// synchronize the acknowledge back to the HCLK domain to indicate the request was handled and can be lowered
sync async(HCLK, req_sync, ack);
timeregsync timeregsync(.clk(TIMECLK), .resetn(resetn_sync), .we0(we0_stored), .we1(we1_stored), .wd(wd_stored), .q(time_int));
binarytogray b2g(time_int, time_int_gc);
flop gcreg(TIMECLK, time_int_gc, time_gc);
sync timesync[63:0](HCLK, time_gc, MTIME_GC);
graytobinary g2b(MTIME_GC, MTIME);
end
endmodule
module binarytogray #(parameter N = `XLEN) (
input logic [N-1:0] b,
output logic [N-1:0] g);
// G[N-1] = B[N-1]; G[i] = B[i] ^ B[i+1] for 0 <= i < N-1
// requires single layer of N-1 XOR gates
assign g = b ^ {1'b0, b[N-1:1]};
endmodule
module graytobinary #(parameter N = `XLEN) (
input logic [N-1:0] g,
output logic [N-1:0] b);
// B[N-1] = G[N-1]; B[i] = G[i] ^ B[i+1] for 0 <= i < N-1
// requires rippling through N-1 XOR gates
2022-01-05 14:35:25 +00:00
genvar i;
assign b[N-1] = g[N-1];
for (i=N-2; i >= 0; i--) begin:g2b
assign b[i] = g[i] ^ b[i+1];
end
endmodule