/////////////////////////////////////////// // clint.sv // // Written: David_Harris@hmc.edu 14 January 2021 // Modified: // // Purpose: Core-Local Interruptor // See FE310-G002-Manual-v19p05 for specifications // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module clint ( input logic HCLK, HRESETn, TIMECLK, input logic HSELCLINT, input logic [15:0] HADDR, input logic HWRITE, input logic [`XLEN-1:0] HWDATA, input logic HREADY, input logic [1:0] HTRANS, output logic [`XLEN-1:0] HREADCLINT, output logic HRESPCLINT, HREADYCLINT, output logic [63:0] MTIME, output logic TimerIntM, SwIntM); logic MSIP; logic [15:0] entry, entryd; logic memwrite; logic initTrans; logic [63:0] MTIMECMP; assign initTrans = HREADY & HSELCLINT & (HTRANS != 2'b00); // entryd and memwrite are delayed by a cycle because AHB controller waits a cycle before outputting write data flopr #(1) memwriteflop(HCLK, ~HRESETn, initTrans & HWRITE, memwrite); flopr #(16) entrydflop(HCLK, ~HRESETn, entry, entryd); assign HRESPCLINT = 0; // OK assign HREADYCLINT = 1'b1; // *** needs to depend on DONE during accesses // word aligned reads if (`XLEN==64) assign #2 entry = {HADDR[15:3], 3'b000}; else assign #2 entry = {HADDR[15:2], 2'b00}; // DH 2/20/21: Eventually allow MTIME to run off a separate clock // This will require synchronizing MTIME to the system clock // before it is read or compared to MTIMECMP. // It will also require synchronizing the write to MTIMECMP. // Use req and ack signals synchronized across the clock domains. // register access if (`XLEN==64) begin:clint // 64-bit always @(posedge HCLK) begin case(entry) 16'h0000: HREADCLINT <= {63'b0, MSIP}; 16'h4000: HREADCLINT <= MTIMECMP; 16'hBFF8: HREADCLINT <= MTIME; default: HREADCLINT <= 0; endcase end always_ff @(posedge HCLK or negedge HRESETn) if (~HRESETn) begin MSIP <= 0; MTIMECMP <= 0; // MTIMECMP is not reset end else if (memwrite) begin if (entryd == 16'h0000) MSIP <= HWDATA[0]; if (entryd == 16'h4000) MTIMECMP <= HWDATA; end // eventually replace MTIME logic below with timereg // timereg tr(HCLK, HRESETn, TIMECLK, memwrite & (entryd==16'hBFF8), 1'b0, HWDATA, MTIME, done); always_ff @(posedge HCLK or negedge HRESETn) if (~HRESETn) begin MTIME <= 0; // MTIMECMP is not reset end else if (memwrite & entryd == 16'hBFF8) begin // MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed MTIME <= HWDATA; end else MTIME <= MTIME + 1; end else begin:clint // 32-bit always @(posedge HCLK) begin case(entry) 16'h0000: HREADCLINT <= {31'b0, MSIP}; 16'h4000: HREADCLINT <= MTIMECMP[31:0]; 16'h4004: HREADCLINT <= MTIMECMP[63:32]; 16'hBFF8: HREADCLINT <= MTIME[31:0]; 16'hBFFC: HREADCLINT <= MTIME[63:32]; default: HREADCLINT <= 0; endcase end always_ff @(posedge HCLK or negedge HRESETn) if (~HRESETn) begin MSIP <= 0; MTIMECMP <= 0; // MTIMECMP is not reset ***? end else if (memwrite) begin if (entryd == 16'h0000) MSIP <= HWDATA[0]; if (entryd == 16'h4000) MTIMECMP[31:0] <= HWDATA; if (entryd == 16'h4004) MTIMECMP[63:32] <= HWDATA; // MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed end // eventually replace MTIME logic below with timereg // timereg tr(HCLK, HRESETn, TIMECLK, memwrite & (entryd==16'hBFF8), memwrite & (entryd == 16'hBFFC), HWDATA, MTIME, done); always_ff @(posedge HCLK or negedge HRESETn) if (~HRESETn) begin MTIME <= 0; // MTIMECMP is not reset end else if (memwrite & (entryd == 16'hBFF8)) begin MTIME[31:0] <= HWDATA; end else if (memwrite & (entryd == 16'hBFFC)) begin // MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed MTIME[63:32]<= HWDATA; end else MTIME <= MTIME + 1; end // Software interrupt when MSIP is set assign SwIntM = MSIP; // Timer interrupt when MTIME >= MTIMECMP assign TimerIntM = ({1'b0, MTIME} >= {1'b0, MTIMECMP}); // unsigned comparison endmodule module timeregsync( input logic clk, resetn, input logic we0, we1, input logic [`XLEN-1:0] wd, output logic [63:0] q); if (`XLEN==64) always_ff @(posedge clk or negedge resetn) if (~resetn) q <= 0; else if (we0) q <= wd; else q <= q + 1; else always_ff @(posedge clk or negedge resetn) if (~resetn) q <= 0; else if (we0) q[31:0] <= wd; else if (we1) q[63:32] <= wd; else q <= q + 1; endmodule module timereg( input logic HCLK, HRESETn, TIMECLK, input logic we0, we1, input logic [`XLEN-1:0] HWDATA, output logic [63:0] MTIME, output logic done); // if (`TIMEBASE_SYNC) begin:timereg // use HCLK for MTIME if (1) begin:timereg // use HCLK for MTIME timregsync timeregsync(.clk(HCLK), .resetn(HRESETn), .we0, .we1, .wd(HWDATA), .q(MTIME)); assign done = 1; // immediately completes end else begin // use asynchronous TIMECLK // TIME counter runs on TIMECLK but bus interface runs on HCLK // Need to synchronize reads and writes // This is subtle because synchronizing a binary counter on a per-bit basis could give a mix of old and new bits // Instead, we use a Gray coded counter that only changes one bit per cycle // Synchronizing this for a read is safe because we are guaranteed to get either the old or the new value. // Writing to the counter requires a request/acknowledge handshake to ensure the write value is held long enough. // The handshake signals are synchronized in each direction across the interface // There is no back pressure on instructions, so if multiple counter writes occur *** logic req, req_sync, ack, we0_stored, we1_stored, ack_stored, resetn_sync; logic [`XLEN-1:0] wd_stored; logic [63:0] time_int, time_int_gc, time_gc, MTIME_GC; // When a write enable is asserted for a cycle, sample the enables and data and raise a request until it is acknowledged // When the acknowledge falls, the transaction is done and the system is ready for another write. // ***look at redoing this assuming write enable and data are held rather than pulsed. always_ff @(posedge HCLK or negedge HRESETn) if (~HRESETn) req <= 0; // don't bother resetting wd else begin req <= we0 | we1 | req & ~ack; we0_stored <= we0; we1_stored <= we1; wd_stored <= HWDATA; ack_stored <= ack; done <= ack_stored & ~ack; end // synchronize the reset and reqest into the TIMECLK domain sync resetsync(TIMECLK, HRESETn, resetn_sync); sync rsync(TIMECLK, req, req_sync); // synchronize the acknowledge back to the HCLK domain to indicate the request was handled and can be lowered sync async(HCLK, req_sync, ack); timeregsync timeregsync(.clk(TIMECLK), .resetn(resetn_sync), .we0(we0_stored), .we1(we1_stored), .wd(wd_stored), .q(time_int)); binarytogray b2g(time_int, time_int_gc); flop gcreg(TIMECLK, time_int_gc, time_gc); sync timesync[63:0](HCLK, time_gc, MTIME_GC); graytobinary g2b(MTIME_GC, MTIME); end endmodule module binarytogray #(parameter N = `XLEN) ( input logic [N-1:0] b, output logic [N-1:0] g); // G[N-1] = B[N-1]; G[i] = B[i] ^ B[i+1] for 0 <= i < N-1 // requires single layer of N-1 XOR gates assign g = b ^ {1'b0, b[N-1:1]}; endmodule module graytobinary #(parameter N = `XLEN) ( input logic [N-1:0] g, output logic [N-1:0] b); // B[N-1] = G[N-1]; B[i] = G[i] ^ B[i+1] for 0 <= i < N-1 // requires rippling through N-1 XOR gates genvar i; assign b[N-1] = g[N-1]; for (i=N-2; i >= 0; i--) begin:g2b assign b[i] = g[i] ^ b[i+1]; end endmodule