cvw/wally-pipelined/src/ifu/ifu.sv

304 lines
12 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// ifu.sv
2021-01-15 04:37:51 +00:00
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
2021-01-15 04:37:51 +00:00
//
// Purpose: Instrunction Fetch Unit
// PC, branch prediction, instruction cache
2021-01-15 04:37:51 +00:00
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
2021-01-15 04:37:51 +00:00
module ifu (
input logic clk, reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushF, FlushD, FlushE, FlushM, FlushW,
// Fetch
input logic [`XLEN-1:0] InstrInF,
input logic InstrAckF,
output logic [`XLEN-1:0] PCF,
output logic [`PA_BITS-1:0] InstrPAdrF,
output logic InstrReadF,
output logic ICacheStallF,
// Decode
output logic [`XLEN-1:0] PCD,
// Execute
output logic [`XLEN-1:0] PCLinkE,
input logic PCSrcE,
input logic [`XLEN-1:0] PCTargetE,
output logic [`XLEN-1:0] PCE,
output logic BPPredWrongE,
// Mem
input logic RetM, TrapM,
input logic [`XLEN-1:0] PrivilegedNextPCM,
output logic [31:0] InstrD, InstrE, InstrM, InstrW,
output logic [`XLEN-1:0] PCM,
output logic [4:0] InstrClassM,
output logic BPPredDirWrongM,
output logic BTBPredPCWrongM,
output logic RASPredPCWrongM,
output logic BPPredClassNonCFIWrongM,
// Writeback
2021-03-18 20:31:21 +00:00
// output logic [`XLEN-1:0] PCLinkW,
// Faults
input logic IllegalBaseInstrFaultD,
output logic ITLBInstrPageFaultF,
output logic IllegalIEUInstrFaultD,
output logic InstrMisalignedFaultM,
output logic [`XLEN-1:0] InstrMisalignedAdrM,
// mmu management
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] PageTableEntryF,
input logic [1:0] PageTypeF,
input logic [`XLEN-1:0] SATP_REGW,
2021-07-04 17:20:29 +00:00
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic ITLBWriteF, ITLBFlushF,
input logic WalkerInstrPageFaultF,
output logic ITLBMissF, ITLBHitF,
2021-06-04 15:59:14 +00:00
// pmp/pma (inside mmu) signals. *** temporarily from AHB bus but eventually replace with internal versions pre H
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0],
output logic PMPInstrAccessFaultF, PMAInstrAccessFaultF,
output logic ISquashBusAccessF
// output logic [5:0] IHSELRegionsF
2021-06-04 15:59:14 +00:00
);
2021-01-15 04:37:51 +00:00
2021-06-10 01:09:16 +00:00
logic [`XLEN-1:0] PCCorrectE, UnalignedPCNextF, PCNextF;
logic misaligned, BranchMisalignedFaultE, BranchMisalignedFaultM, TrapMisalignedFaultM;
logic PrivilegedChangePCM;
logic IllegalCompInstrD;
logic [`XLEN-1:0] PCPlus2or4F, PCW, PCLinkD, PCLinkM, PCPF;
logic [`XLEN-3:0] PCPlusUpperF;
logic CompressedF;
logic [31:0] InstrRawD, FinalInstrRawF;
localparam [31:0] nop = 32'h00000013; // instruction for NOP
2021-04-26 11:43:16 +00:00
logic reset_q; // *** look at this later.
logic BPPredDirWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE;
logic PMALoadAccessFaultM, PMAStoreAccessFaultM;
logic PMPLoadAccessFaultM, PMPStoreAccessFaultM; // *** these are just so that the mmu has somewhere to put these outputs, they're unused in this stage
// if you're allowed to parameterize outputs/ inputs existence, these are an easy delete.
logic [`PA_BITS-1:0] PCPFmmu, PCNextFPhys; // used to either truncate or expand PCPF and PCNextF into `PA_BITS width.
generate
if (`XLEN==32) begin
assign PCPF = PCPFmmu[31:0];
assign PCNextFPhys = {{(`PA_BITS-`XLEN){1'b0}}, PCNextF};
end else begin
assign PCPF = {8'b0, PCPFmmu};
assign PCNextFPhys = PCNextF[`PA_BITS-1:0];
end
endgenerate
mmu #(.TLB_ENTRIES(`ITLB_ENTRIES), .IMMU(1))
itlb(.VirtualAddress(PCF),
2021-06-24 18:05:22 +00:00
.Size(2'b10),
.PTE(PageTableEntryF),
2021-06-24 18:05:22 +00:00
.PageTypeWriteVal(PageTypeF),
.TLBWrite(ITLBWriteF),
.TLBFlush(ITLBFlushF),
.PhysicalAddress(PCPFmmu),
.TLBMiss(ITLBMissF),
.TLBHit(ITLBHitF),
.TLBPageFault(ITLBInstrPageFaultF),
.ExecuteAccessF(1'b1), // ***dh -- this should eventually change to only true if an instruction fetch is occurring
2021-06-24 18:05:22 +00:00
.AtomicAccessM(1'b0),
.ReadAccessM(1'b0),
.WriteAccessM(1'b0),
2021-06-24 18:05:22 +00:00
.SquashBusAccess(ISquashBusAccessF),
// .HSELRegions(IHSELRegionsF),
2021-06-24 18:05:22 +00:00
.DisableTranslation(1'b0),
.*);
2021-03-04 08:11:34 +00:00
2021-06-04 15:59:14 +00:00
// branch predictor signals
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF, PCNext0F, PCNext1F, PCNext2F, PCNext3F;
2021-03-30 18:57:40 +00:00
logic [4:0] InstrClassD, InstrClassE;
// *** put memory interface on here, InstrF becomes output
2021-03-04 08:11:34 +00:00
//assign InstrPAdrF = PCF; // *** no MMU
2021-02-15 15:10:50 +00:00
//assign InstrReadF = ~StallD; // *** & ICacheMissF; add later
// assign InstrReadF = 1; // *** & ICacheMissF; add later
icache icache(.*,
.PCNextF(PCNextFPhys),
.PCPF(PCPFmmu),
.WalkerInstrPageFaultF(WalkerInstrPageFaultF));
flopenl #(32) AlignedInstrRawDFlop(clk, reset | reset_q, ~StallD, FlushD ? nop : FinalInstrRawF, nop, InstrRawD);
2021-01-15 04:37:51 +00:00
assign PrivilegedChangePCM = RetM | TrapM;
mux2 #(`XLEN) pcmux0(.d0(PCPlus2or4F),
.d1(BPPredPCF),
.s(SelBPPredF),
.y(PCNext0F));
mux2 #(`XLEN) pcmux1(.d0(PCNext0F),
.d1(PCCorrectE),
.s(BPPredWrongE),
.y(PCNext1F));
mux2 #(`XLEN) pcmux2(.d0(PCNext1F),
.d1(PrivilegedNextPCM),
.s(PrivilegedChangePCM),
.y(PCNext2F));
mux2 #(`XLEN) pcmux4(.d0(PCNext2F),
.d1(`RESET_VECTOR),
.s(reset_q),
.y(UnalignedPCNextF));
flop #(1) resetReg (.clk(clk),
.d(reset),
.q(reset_q));
assign PCNextF = {UnalignedPCNextF[`XLEN-1:1], 1'b0}; // hart-SPEC p. 21 about 16-bit alignment
flopenl #(`XLEN) pcreg(clk, reset, ~StallF & ~ICacheStallF, PCNextF, `RESET_VECTOR, PCF);
// branch and jump predictor
generate
if (`BPRED_ENABLED == 1) begin : bpred
// I am making the port connection explicit for now as I want to see them and they will be changing.
bpred bpred(.*,
.PCNextF(PCNextF),
.BPPredPCF(BPPredPCF),
.SelBPPredF(SelBPPredF),
.PCE(PCE),
.PCSrcE(PCSrcE),
.PCTargetE(PCTargetE),
.PCD(PCD),
.PCLinkE(PCLinkE),
.InstrClassE(InstrClassE),
.BPPredWrongE(BPPredWrongE),
.BPPredDirWrongE(BPPredDirWrongE),
.BTBPredPCWrongE(BTBPredPCWrongE),
.RASPredPCWrongE(RASPredPCWrongE),
.BPPredClassNonCFIWrongE(BPPredClassNonCFIWrongE));
end else begin : bpred
assign BPPredPCF = {`XLEN{1'b0}};
assign SelBPPredF = 1'b0;
assign BPPredWrongE = PCSrcE;
assign BPPredDirWrongE = 1'b0;
assign BTBPredPCWrongE = 1'b0;
assign RASPredPCWrongE = 1'b0;
assign BPPredClassNonCFIWrongE = 1'b0;
end
endgenerate
// The true correct target is PCTargetE if PCSrcE is 1 else it is the fall through PCLinkE.
assign PCCorrectE = PCSrcE ? PCTargetE : PCLinkE;
// pcadder
// add 2 or 4 to the PC, based on whether the instruction is 16 bits or 32
assign PCPlusUpperF = PCF[`XLEN-1:2] + 1; // add 4 to PC
// choose PC+2 or PC+4
always_comb
if (CompressedF) // add 2
if (PCF[1]) PCPlus2or4F = {PCPlusUpperF, 2'b00};
else PCPlus2or4F = {PCF[`XLEN-1:2], 2'b10};
else PCPlus2or4F = {PCPlusUpperF, PCF[1:0]}; // add 4
2021-01-15 04:37:51 +00:00
// Decode stage pipeline register and logic
flopenrc #(`XLEN) PCDReg(clk, reset, FlushD, ~StallD, PCF, PCD);
2021-01-28 05:22:05 +00:00
// expand 16-bit compressed instructions to 32 bits
decompress decomp(.*);
assign IllegalIEUInstrFaultD = IllegalBaseInstrFaultD | IllegalCompInstrD; // illegal if bad 32 or 16-bit instr
// *** combine these with others in better way, including M, F
// the branch predictor needs a compact decoding of the instruction class.
// *** consider adding in the alternate return address x5 for returns.
2021-03-30 18:57:40 +00:00
assign InstrClassD[4] = (InstrD[6:0] & 7'h77) == 7'h67 && (InstrD[11:07] & 5'h1B) == 5'h01; // jal(r) must link to ra or r5
assign InstrClassD[3] = InstrD[6:0] == 7'h67 && (InstrD[19:15] & 5'h1B) == 5'h01; // return must return to ra or r5
assign InstrClassD[2] = InstrD[6:0] == 7'h67 && (InstrD[19:15] & 5'h1B) != 5'h01 && (InstrD[11:7] & 5'h1B) != 5'h01; // jump register, but not return
assign InstrClassD[1] = InstrD[6:0] == 7'h6F && (InstrD[11:7] & 5'h1B) != 5'h01; // jump, RD != x1 or x5
assign InstrClassD[0] = InstrD[6:0] == 7'h63; // branch
2021-01-15 04:37:51 +00:00
// Misaligned PC logic
generate
if (`C_SUPPORTED) // C supports compressed instructions on halfword boundaries
assign misaligned = PCNextF[0];
else // instructions must be on word boundaries
assign misaligned = |PCNextF[1:0];
endgenerate
// pipeline misaligned faults to M stage
assign BranchMisalignedFaultE = misaligned & PCSrcE; // E-stage (Branch/Jump) misaligned
2021-02-08 04:21:55 +00:00
flopenr #(1) InstrMisalginedReg(clk, reset, ~StallM, BranchMisalignedFaultE, BranchMisalignedFaultM);
// *** Ross Thompson. Check InstrMisalignedAdrM as I believe it is the same as PCF. Should be able to remove.
2021-02-08 04:21:55 +00:00
flopenr #(`XLEN) InstrMisalignedAdrReg(clk, reset, ~StallM, PCNextF, InstrMisalignedAdrM);
2021-01-15 04:37:51 +00:00
assign TrapMisalignedFaultM = misaligned & PrivilegedChangePCM;
assign InstrMisalignedFaultM = BranchMisalignedFaultM; // | TrapMisalignedFaultM; *** put this back in without causing a cyclic path
2021-02-08 04:21:55 +00:00
flopenr #(32) InstrEReg(clk, reset, ~StallE, FlushE ? nop : InstrD, InstrE);
flopenr #(32) InstrMReg(clk, reset, ~StallM, FlushM ? nop : InstrE, InstrM);
// flopenr #(32) InstrWReg(clk, reset, ~StallW, FlushW ? nop : InstrM, InstrW); // just for testbench, delete later
2021-02-08 04:21:55 +00:00
flopenr #(`XLEN) PCEReg(clk, reset, ~StallE, PCD, PCE);
flopenr #(`XLEN) PCMReg(clk, reset, ~StallM, PCE, PCM);
// flopenr #(`XLEN) PCWReg(clk, reset, ~StallW, PCM, PCW); // *** probably not needed; delete later
2021-01-28 05:22:05 +00:00
2021-03-30 18:57:40 +00:00
flopenrc #(5) InstrClassRegE(.clk(clk),
.reset(reset),
.en(~StallE),
.clear(FlushE),
.d(InstrClassD),
.q(InstrClassE));
2021-03-30 18:57:40 +00:00
flopenrc #(5) InstrClassRegM(.clk(clk),
2021-03-23 18:25:51 +00:00
.reset(reset),
.en(~StallM),
.clear(FlushM),
.d(InstrClassE),
.q(InstrClassM));
flopenrc #(4) BPPredWrongRegM(.clk(clk),
2021-03-23 18:25:51 +00:00
.reset(reset),
.en(~StallM),
.clear(FlushM),
.d({BPPredDirWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE}),
.q({BPPredDirWrongM, BTBPredPCWrongM, RASPredPCWrongM, BPPredClassNonCFIWrongM}));
2021-03-23 18:25:51 +00:00
2021-01-29 02:40:48 +00:00
// seems like there should be a lower-cost way of doing this PC+2 or PC+4 for JAL.
// either have ALU compute PC+2/4 and feed into ALUResult input of ResultMux or
// have dedicated adder in Mem stage based on PCM + 2 or 4
// *** redo this
2021-02-08 04:21:55 +00:00
flopenr #(`XLEN) PCPDReg(clk, reset, ~StallD, PCPlus2or4F, PCLinkD);
flopenr #(`XLEN) PCPEReg(clk, reset, ~StallE, PCLinkD, PCLinkE);
2021-03-18 20:31:21 +00:00
// flopenr #(`XLEN) PCPMReg(clk, reset, ~StallM, PCLinkE, PCLinkM);
// /flopenr #(`XLEN) PCPWReg(clk, reset, ~StallW, PCLinkM, PCLinkW);
2021-01-15 04:37:51 +00:00
endmodule