cvw/synthDC/extractSummary.py
Madeleine Masser-Frye 48690e6339 edited indentation
2022-08-02 10:23:04 +00:00

255 lines
9.1 KiB
Python
Executable File

#!/usr/bin/python3
# Madeleine Masser-Frye (mmmasserfrye@hmc.edu) 06/2022
from collections import namedtuple
import re
import csv
import subprocess
from matplotlib.cbook import flatten
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import numpy as np
from ppa.ppaAnalyze import noOutliers
from matplotlib import ticker
import argparse
def synthsintocsv():
''' writes a CSV with one line for every available synthesis
each line contains the module, tech, width, target freq, and resulting metrics
'''
print("This takes a moment...")
bashCommand = "find . -path '*runs/wallypipelinedcore_*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
specReg = re.compile('[a-zA-Z0-9]+')
metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*')
file = open("Summary.csv", "w")
writer = csv.writer(file)
writer.writerow(['Width', 'Config', 'Special', 'Tech', 'Target Freq', 'Delay', 'Area'])
for oneSynth in allSynths:
descrip = specReg.findall(oneSynth)
width = descrip[2][:4]
config = descrip[2][4:]
if descrip[3][-2:] == 'nm':
special = ''
else:
special = descrip[3]
descrip = descrip[1:]
tech = descrip[3][:-2]
freq = descrip[4]
metrics = []
for phrase in ['Path Slack', 'Design Area']:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*qor*'
bashCommand = bashCommand.format(phrase)
try:
output = subprocess.check_output(['bash','-c', bashCommand])
nums = metricReg.findall(str(output))
nums = [float(m) for m in nums]
metrics += nums
except:
print(width + config + tech + '_' + freq + " doesn't have reports")
if metrics == []:
pass
else:
delay = 1000/int(freq) - metrics[0]
area = metrics[1]
writer.writerow([width, config, special, tech, freq, delay, area])
file.close()
def synthsfromcsv(filename):
Synth = namedtuple("Synth", "width config special tech freq delay area")
with open(filename, newline='') as csvfile:
csvreader = csv.reader(csvfile)
global allSynths
allSynths = list(csvreader)[1:]
for i in range(len(allSynths)):
for j in range(len(allSynths[0])):
try: allSynths[i][j] = int(allSynths[i][j])
except:
try: allSynths[i][j] = float(allSynths[i][j])
except: pass
allSynths[i] = Synth(*allSynths[i])
return allSynths
def freqPlot(tech, width, config):
''' plots delay, area for syntheses with specified tech, module, width
'''
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (width == oneSynth.width) & (config == oneSynth.config) & (tech == oneSynth.tech) & ('' == oneSynth.special):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
allFreqs = list(flatten(freqsL))
if allFreqs != []:
median = np.median(allFreqs)
else:
median = 0
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
freqs = freqsL[ind]
freqs, delays, areas = noOutliers(median, freqs, delays, areas)
c = 'blue' if ind else 'green'
targs = [1000/f for f in freqs]
ax1.scatter(targs, delays, color=c)
ax2.scatter(targs, areas, color=c)
freqs = list(flatten(freqsL))
delays = list(flatten(delaysL))
areas = list(flatten(areasL))
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
ax1.legend(handles=legend_elements)
ytop = ax2.get_ylim()[1]
ax2.set_ylim(ymin=0, ymax=1.1*ytop)
ax2.set_xlabel("Target Cycle Time (ns)")
ax1.set_ylabel('Cycle Time Achieved (ns)')
ax2.set_ylabel('Area (sq microns)')
ax1.set_title(tech + ' ' + width + config)
ax2.yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
addFO4axis(fig, ax1, tech)
plt.savefig('./plots/wally/freqSweep_' + tech + '_' + width + config + '.png')
def areaDelay(tech, delays, areas, labels, fig, ax, norm=False):
plt.subplots_adjust(left=0.18)
fo4 = techdict[tech].fo4
add32area = techdict[tech].add32area
marker = techdict[tech].shape
color = techdict[tech].color
if norm:
delays = [d/fo4 for d in delays]
areas = [a/add32area for a in areas]
plt.scatter(delays, areas, marker=marker, color=color)
plt.xlabel('Cycle time (ns)')
plt.ylabel('Area (sq microns)')
ytop = ax.get_ylim()[1]
plt.ylim(ymin=0, ymax=1.1*ytop)
ax.yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
for i in range(len(labels)):
plt.annotate(labels[i], (delays[i], areas[i]), textcoords="offset points", xytext=(0,10), ha='center')
return fig
def plotFeatures(tech, width, config):
delays, areas, labels = ([] for i in range(3))
freq = techdict[tech].targfreq
for oneSynth in allSynths:
if (tech == oneSynth.tech) & (freq == oneSynth.freq):
if (oneSynth.config == config) & (width == oneSynth.width):
delays += [oneSynth.delay]
areas += [oneSynth.area]
labels += [oneSynth.special]
fig, (ax) = plt.subplots(1, 1)
fig = areaDelay(tech, delays, areas, labels, fig, ax)
titlestr = tech+'_'+width+config
plt.title(titlestr)
plt.savefig('./plots/wally/features_'+titlestr+'.png')
def plotConfigs(tech, special=''):
delays, areas, labels = ([] for i in range(3))
freq = techdict[tech].targfreq
for oneSynth in allSynths:
if (tech == oneSynth.tech) & (freq == oneSynth.freq) & (oneSynth.special == special):
delays += [oneSynth.delay]
areas += [oneSynth.area]
labels += [oneSynth.width + oneSynth.config]
fig, (ax) = plt.subplots(1, 1)
fig = areaDelay(tech, delays, areas, labels, fig, ax)
titleStr = tech+'_'+special
plt.title(titleStr)
plt.savefig('./plots/wally/configs_' + titleStr + '.png')
def normAreaDelay(special=''):
fig, (ax) = plt.subplots(1, 1)
fullLeg = []
for tech in list(techdict.keys()):
delays, areas, labels = ([] for i in range(3))
spec = techdict[tech]
freq = spec.targfreq
for oneSynth in allSynths:
if (tech == oneSynth.tech) & (freq == oneSynth.freq) & (oneSynth.special == special):
delays += [oneSynth.delay]
areas += [oneSynth.area]
labels += [oneSynth.width + oneSynth.config]
areaDelay(tech, delays, areas, labels, fig, ax, norm=True)
fullLeg += [lines.Line2D([0], [0], markerfacecolor=spec.color, label=tech, marker=spec.shape, markersize=10, color='w')]
ax.set_title('Normalized Area & Cycle Time by Configuration')
ax.set_xlabel('Cycle Time (FO4)')
ax.set_ylabel('Area (add32)')
ax.legend(handles = fullLeg, loc='upper left')
plt.savefig('./plots/wally/normAreaDelay.png')
def addFO4axis(fig, ax, tech):
fo4 = techdict[tech].fo4
ax3 = fig.add_axes((0.125,0.14,0.775,0.0))
ax3.yaxis.set_visible(False) # hide the yaxis
fo4Range = [x/fo4 for x in ax.get_xlim()]
dif = fo4Range[1] - fo4Range[0]
for n in [0.02, 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000]:
d = dif/n
if d > 3 and d < 10:
r = [int(x/n) for x in fo4Range]
nsTicks = [round(x*n, 2) for x in range(r[0], r[1]+1)]
break
new_tick_locations = [fo4*float(x) for x in nsTicks]
ax3.set_xticks(new_tick_locations)
ax3.set_xticklabels(nsTicks)
ax3.set_xlim(ax.get_xlim())
ax3.set_xlabel("FO4 delays")
plt.subplots_adjust(left=0.125, bottom=0.25, right=0.9, top=0.9)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--skyfreq", type=int, default=3000, help = "Target frequency used for sky90 syntheses")
parser.add_argument("-t", "--tsmcfreq", type=int, default=10000, help = "Target frequency used for tsmc28 syntheses")
args = parser.parse_args()
TechSpec = namedtuple("TechSpec", "color shape targfreq fo4 add32area add32lpower add32denergy")
techdict = {}
techdict['sky90'] = TechSpec('green', 'o', args.skyfreq, 43.2e-3, 1440.600027, 714.057, 0.658023)
techdict['tsmc28'] = TechSpec('blue', 's', args.tsmcfreq, 12.2e-3, 209.286002, 1060.0, .081533)
synthsintocsv()
synthsfromcsv('Summary.csv')
freqPlot('tsmc28', 'rv32', 'e')
freqPlot('sky90', 'rv32', 'e')
plotFeatures('sky90', 'rv64', 'gc')
plotFeatures('tsmc28', 'rv64', 'gc')
plotConfigs('sky90', special='orig')
plotConfigs('tsmc28', special='orig')
normAreaDelay(special='orig')