cvw/wally-pipelined/src/datapath.sv
Noah Boorstin e7288716f7 Linux testbench works now
Added parameterized PCSTART to allow compatibility between imperas and busybear tests
Hopefully we are done with the "busybear" branch, please don't use it for future work
2021-01-24 17:10:00 -05:00

170 lines
7.0 KiB
Systemverilog

///////////////////////////////////////////
// datapath.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Wally Datapath
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module datapath #(parameter PCSTART = 32'h80000000) (
input logic clk, reset,
// Fetch stage signals
input logic StallF,
output logic [`XLEN-1:0] PCF,
input logic [31:0] InstrF,
// Decode stage signals
output logic [6:0] OpD,
output logic [2:0] Funct3D,
output logic Funct7b5D,
input logic StallD, FlushD,
input logic [2:0] ImmSrcD,
input logic LoadStallD, // for performance counter
output logic IllegalCompInstrD,
// Execute stage signals
input logic FlushE,
input logic [1:0] ForwardAE, ForwardBE,
input logic PCSrcE,
input logic [4:0] ALUControlE,
input logic ALUSrcAE, ALUSrcBE,
input logic TargetSrcE,
output logic [2:0] FlagsE,
// Memory stage signals
input logic FlushM,
input logic [1:0] MemRWM,
input logic CSRWriteM, PrivilegedM,
input logic InstrAccessFaultM, IllegalInstrFaultM,
input logic TimerIntM, ExtIntM, SwIntM,
output logic InstrMisalignedFaultM,
input logic [2:0] Funct3M,
output logic [`XLEN-1:0] WriteDataM, ALUResultM,
input logic [`XLEN-1:0] ReadDataM,
output logic [7:0] ByteMaskM,
output logic RetM, TrapM,
input logic [4:0] SetFflagsM,
input logic DataAccessFaultM,
// Writeback stage signals
input logic FlushW,
input logic RegWriteW,
input logic [1:0] ResultSrcW,
input logic InstrValidW,
input logic FloatRegWriteW,
output logic [2:0] FRM_REGW,
// Hazard Unit signals
output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E,
output logic [4:0] RdE, RdM, RdW);
// Fetch stage signals
logic [`XLEN-1:0] PCPlus2or4F;
// Decode stage signals
logic [31:0] InstrD;
logic [`XLEN-1:0] PCD, PCPlus2or4D;
logic [`XLEN-1:0] RD1D, RD2D;
logic [`XLEN-1:0] ExtImmD;
logic [31:0] InstrDecompD;
logic [4:0] RdD;
// Execute stage signals
logic [31:0] InstrE;
logic [`XLEN-1:0] RD1E, RD2E;
logic [`XLEN-1:0] PCE, ExtImmE;
logic [`XLEN-1:0] PreSrcAE, SrcAE, SrcBE;
logic [`XLEN-1:0] ALUResultE;
logic [`XLEN-1:0] WriteDataE;
logic [`XLEN-1:0] TargetBaseE;
// Memory stage signals
logic [31:0] InstrM;
logic [`XLEN-1:0] PCM;
logic [`XLEN-1:0] SrcAM;
logic [`XLEN-1:0] ReadDataExtM;
logic [`XLEN-1:0] WriteDataFullM;
logic [`XLEN-1:0] CSRReadValM;
logic [`XLEN-1:0] PrivilegedNextPCM;
logic LoadMisalignedFaultM, LoadAccessFaultM;
logic StoreMisalignedFaultM, StoreAccessFaultM;
logic [`XLEN-1:0] InstrMisalignedAdrM;
// Writeback stage signals
logic [`XLEN-1:0] ALUResultW;
logic [`XLEN-1:0] ReadDataW;
logic [`XLEN-1:0] PCW;
logic [`XLEN-1:0] CSRValW;
logic [`XLEN-1:0] ResultW;
logic [31:0] nop = 32'h00000013; // instruction for NOP
// Fetch stage pipeline register and logic; also Ex stage for branches
pclogic #(PCSTART) pclogic(.*);
// Decode stage pipeline register and logic
flopenl #(32) InstrDReg(clk, reset, ~StallD, (FlushD ? nop : InstrF), nop, InstrD);
flopenrc #(`XLEN) PCDReg(clk, reset, FlushD, ~StallD, PCF, PCD);
flopenrc #(`XLEN) PCPlus2or4DReg(clk, reset, FlushD, ~StallD, PCPlus2or4F, PCPlus2or4D);
instrDecompress decomp(.*);
assign OpD = InstrDecompD[6:0];
assign Funct3D = InstrDecompD[14:12];
assign Funct7b5D = InstrDecompD[30];
assign Rs1D = InstrDecompD[19:15];
assign Rs2D = InstrDecompD[24:20];
assign RdD = InstrDecompD[11:7];
regfile regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, RD1D, RD2D);
extend ext(.InstrDecompD(InstrDecompD[31:7]), .*);
// Execute stage pipeline register and logic
floprc #(`XLEN) RD1EReg(clk, reset, FlushE, RD1D, RD1E);
floprc #(`XLEN) RD2EReg(clk, reset, FlushE, RD2D, RD2E);
floprc #(`XLEN) PCEReg(clk, reset, FlushE, PCD, PCE);
floprc #(`XLEN) ExtImmEReg(clk, reset, FlushE, ExtImmD, ExtImmE);
flopr #(32) InstrEReg(clk, reset, FlushE ? nop : InstrDecompD, InstrE);
floprc #(5) Rs1EReg(clk, reset, FlushE, Rs1D, Rs1E);
floprc #(5) Rs2EReg(clk, reset, FlushE, Rs2D, Rs2E);
floprc #(5) RdEReg(clk, reset, FlushE, RdD, RdE);
mux3 #(`XLEN) faemux(RD1E, ResultW, ALUResultM, ForwardAE, PreSrcAE);
mux3 #(`XLEN) fbemux(RD2E, ResultW, ALUResultM, ForwardBE, WriteDataE);
mux2 #(`XLEN) srcamux(PreSrcAE, PCE, ALUSrcAE, SrcAE);
mux2 #(`XLEN) srcbmux(WriteDataE, ExtImmE, ALUSrcBE, SrcBE);
alu #(`XLEN) alu(SrcAE, SrcBE, ALUControlE, ALUResultE, FlagsE);
mux2 #(`XLEN) targetsrcmux(PCE, SrcAE, TargetSrcE, TargetBaseE);
// Memory stage pipeline register
floprc #(`XLEN) SrcAMReg(clk, reset, FlushM, SrcAE, SrcAM);
floprc #(`XLEN) ALUResultMReg(clk, reset, FlushM, ALUResultE, ALUResultM);
floprc #(`XLEN) WriteDataMReg(clk, reset, FlushM, WriteDataE, WriteDataFullM);
floprc #(`XLEN) PCMReg(clk, reset, FlushM, PCE, PCM);
flopr #(32) InstrMReg(clk, reset, FlushM ? nop : InstrE, InstrM);
floprc #(5) RdMEg(clk, reset, FlushM, RdE, RdM);
memdp memdp(.AdrM(ALUResultM), .*);
// Priveleged block operates in M and W stages, handling CSRs and exceptions
privileged priv(.IllegalInstrFaultInM(IllegalInstrFaultM), .*);
// Writeback stage pipeline register and logic
floprc #(`XLEN) ALUResultWReg(clk, reset, FlushW, ALUResultM, ALUResultW);
floprc #(`XLEN) ReadDataWReg(clk, reset, FlushW, ReadDataExtM, ReadDataW);
floprc #(`XLEN) PCWReg(clk, reset, FlushW, PCM, PCW);
floprc #(`XLEN) CSRValWReg(clk, reset, FlushW, CSRReadValM, CSRValW);
floprc #(5) RdWEg(clk, reset, FlushW, RdM, RdW);
mux4 #(`XLEN) resultmux(ALUResultW, ReadDataW, PCW, CSRValW, ResultSrcW, ResultW);
endmodule