cvw/wally-pipelined/src/fpu/fma.sv
2021-07-11 18:06:33 -04:00

583 lines
27 KiB
Systemverilog

module fma(
input logic clk,
input logic reset,
input logic FlushM,
input logic StallM,
input logic [63:0] SrcXE, SrcXM, // X
input logic [63:0] SrcYE, SrcYM, // Y
input logic [63:0] SrcZE, SrcZM, // Z
input logic FmtE, FmtM, // precision 1 = double 0 = single
input logic [2:0] FOpCtrlM, FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
output logic [63:0] FMAResM,
output logic [4:0] FMAFlgM);
logic [105:0] ProdManE, ProdManM;
logic [161:0] AlignedAddendE, AlignedAddendM;
logic [12:0] ProdExpE, ProdExpM;
logic AddendStickyE, AddendStickyM;
logic KillProdE, KillProdM;
logic XZeroE, YZeroE, ZZeroE, XZeroM, YZeroM, ZZeroM;
logic XInfE, YInfE, ZInfE, XInfM, YInfM, ZInfM;
logic XNaNE, YNaNE, ZNaNE, XNaNM, YNaNM, ZNaNM;
fma1 fma1 (.X(SrcXE), .Y(SrcYE), .Z(SrcZE), .FOpCtrlE, .FmtE, .ProdManE, .AlignedAddendE,
.ProdExpE, .AddendStickyE, .KillProdE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XNaNE, .YNaNE, .ZNaNE );
flopenrc #(106) EMRegFma1(clk, reset, FlushM, ~StallM, ProdManE, ProdManM);
flopenrc #(162) EMRegFma2(clk, reset, FlushM, ~StallM, AlignedAddendE, AlignedAddendM);
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
flopenrc #(11) EMRegFma4(clk, reset, FlushM, ~StallM,
{AddendStickyE, KillProdE, XZeroE, YZeroE, ZZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE},
{AddendStickyM, KillProdM, XZeroM, YZeroM, ZZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM});
fma2 fma2(.X(SrcXM), .Y(SrcYM), .Z(SrcZM), .FOpCtrlM, .FrmM, .FmtM,
.ProdManM, .AlignedAddendM, .ProdExpM, .AddendStickyM, .KillProdM,
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM,
.FMAResM, .FMAFlgM);
endmodule
module fma1(
input logic [63:0] X, // X
input logic [63:0] Y, // Y
input logic [63:0] Z, // Z
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtE, // precision 1 = double 0 = single
output logic [105:0] ProdManE, // 1.X frac * 1.Y frac
output logic [161:0] AlignedAddendE, // Z aligned for addition
output logic [12:0] ProdExpE, // X exponent + Y exponent - bias
output logic AddendStickyE, // sticky bit that is calculated during alignment
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
output logic XZeroE, YZeroE, ZZeroE, // inputs are zero
output logic XInfE, YInfE, ZInfE, // inputs are infinity
output logic XNaNE, YNaNE, ZNaNE); // inputs are NaN
logic [51:0] XFrac,YFrac,ZFrac; // input fraction
logic [52:0] XMan,YMan,ZMan; // input mantissa (with leading one)
logic [12:0] XExp,YExp,ZExp; // input exponents
logic XSgn,YSgn,ZSgn; // input signs
logic [12:0] AlignCnt; // how far to shift the addend to align with the product
logic [213:0] ZManShifted; // output of the alignment shifter including sticky bit
logic [213:0] ZManPreShifted; // input to the alignment shifter
logic XDenorm, YDenorm, ZDenorm; // inputs are denormal
logic [63:0] Addend; // value to add (Z or zero)
logic [12:0] Bias; // 1023 for double, 127 for single
logic XExpZero, YExpZero, ZExpZero; // input exponent zero
logic XFracZero, YFracZero, ZFracZero; // input fraction zero
logic XExpMax, YExpMax, ZExpMax; // input exponent all 1s
///////////////////////////////////////////////////////////////////////////////
// split inputs into the sign bit, fraction, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
///////////////////////////////////////////////////////////////////////////////
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlE[2] ? 64'b0 : Z;
assign XSgn = X[63];
assign YSgn = Y[63];
assign ZSgn = Addend[63];
assign XExp = FmtE ? {2'b0, X[62:52]} : {5'b0, X[62:55]};
assign YExp = FmtE ? {2'b0, Y[62:52]} : {5'b0, Y[62:55]};
assign ZExp = FmtE ? {2'b0, Addend[62:52]} : {5'b0, Addend[62:55]};
assign XFrac = FmtE ? X[51:0] : {X[54:32], 29'b0};
assign YFrac = FmtE ? Y[51:0] : {Y[54:32], 29'b0};
assign ZFrac = FmtE ? Addend[51:0] : {Addend[54:32], 29'b0};
assign XMan = {~XExpZero, XFrac};
assign YMan = {~YExpZero, YFrac};
assign ZMan = {~ZExpZero, ZFrac};
assign Bias = FmtE ? 13'h3ff : 13'h7f;
///////////////////////////////////////////////////////////////////////////////
// determine if an input is a special value
///////////////////////////////////////////////////////////////////////////////
assign XExpZero = ~|XExp;
assign YExpZero = ~|YExp;
assign ZExpZero = ~|ZExp;
assign XFracZero = ~|XFrac;
assign YFracZero = ~|YFrac;
assign ZFracZero = ~|ZFrac;
assign XExpMax = FmtE ? &XExp[10:0] : &XExp[7:0];
assign YExpMax = FmtE ? &YExp[10:0] : &YExp[7:0];
assign ZExpMax = FmtE ? &ZExp[10:0] : &ZExp[7:0];
assign XNaNE = XExpMax & ~XFracZero;
assign YNaNE = YExpMax & ~YFracZero;
assign ZNaNE = ZExpMax & ~ZFracZero;
assign XDenorm = XExpZero & ~XFracZero;
assign YDenorm = YExpZero & ~YFracZero;
assign ZDenorm = ZExpZero & ~ZFracZero;
assign XInfE = XExpMax & XFracZero;
assign YInfE = YExpMax & YFracZero;
assign ZInfE = ZExpMax & ZFracZero;
assign XZeroE = XExpZero & XFracZero;
assign YZeroE = YExpZero & YFracZero;
assign ZZeroE = ZExpZero & ZFracZero;
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one if there is a denormal number
///////////////////////////////////////////////////////////////////////////////
// verilator lint_off WIDTH
assign ProdExpE = (XZeroE|YZeroE) ? 13'b0 :
XExp + YExp - Bias + XDenorm + YDenorm;
// Calculate the product's mantissa
// - Add the assumed one. If the number is denormalized or zero, it does not have an assumed one.
assign ProdManE = XMan * YMan;
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one to the exponent if it is a denormal number
assign AlignCnt = ProdExpE - ZExp - ZDenorm;
// verilator lint_on WIDTH
// Defualt Addition without shifting
// | 55'b0 | 106'b(product) | 2'b0 |
// |1'b0| addnend |
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
assign ZManPreShifted = {55'b0, ZMan, 106'b0};
always_comb
begin
// If the product is too small to effect the sum, kill the product
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
if ($signed(AlignCnt) <= $signed(-13'd56)) begin
KillProdE = 1;
ZManShifted = ZManPreShifted;//{107'b0, ZMan, 54'b0};
AddendStickyE = ~(XZeroE|YZeroE);
// If the Addend is shifted left (negitive AlignCnt)
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if($signed(AlignCnt) <= $signed(13'd0)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted << -AlignCnt;
AddendStickyE = |(ZManShifted[51:0]);
// If the Addend is shifted right (positive AlignCnt)
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if ($signed(AlignCnt)<=$signed(13'd106)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted >> AlignCnt;
AddendStickyE = |(ZManShifted[51:0]);
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the addend to be considered too small
// - The 2 extra bits are needed for rounding
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else begin
KillProdE = 0;
ZManShifted = 0;
AddendStickyE = ~ZZeroE;
end
end
assign AlignedAddendE = ZManShifted[213:52];
endmodule
module fma2(
input logic [63:0] X, // X
input logic [63:0] Y, // Y
input logic [63:0] Z, // Z
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtM, // precision 1 = double 0 = single
input logic [105:0] ProdManM, // 1.X frac * 1.Y frac
input logic [161:0] AlignedAddendM, // Z aligned for addition
input logic [12:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
output logic [63:0] FMAResM, // FMA final result
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
logic [51:0] ResultFrac; // Result fraction
logic [10:0] ResultExp; // Result exponent
logic ResultSgn; // Result sign
logic [10:0] ZExp; // input exponent
logic XSgn, YSgn, ZSgn; // input sign
logic PSgn; // product sign
logic [105:0] ProdMan2; // product being added
logic [162:0] AlignedAddend2; // possibly inverted aligned Z
logic [161:0] Sum; // positive sum
logic [162:0] PreSum; // possibly negitive sum
logic [12:0] SumExp; // exponent of the normalized sum
logic [12:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [12:0] SumExpTmpMinus1; // SumExpTmp-1
logic [12:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [54:0] NormSum; // normalized sum
logic [161:0] SumShifted; // sum shifted for normalization
logic [8:0] NormCnt; // output of the leading zero detector
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic NegSum; // is the sum negitive
logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
logic ResultDenorm; // is the result denormalized
logic Sticky; // Sticky bit
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
logic UfPlus1, UfCalcPlus1; // do you add one (for determining underflow flag)
logic Invalid,Underflow,Overflow,Inexact; // flags
logic [8:0] DenormShift; // right shift if the result is denormalized
logic SubBySmallNum; // was there supposed to be a subtraction by a small number
logic [63:0] Addend; // value to add (Z or zero)
logic ZeroSgn; // the result's sign if the sum is zero
logic ResultSgnTmp; // the result's sign assuming the result is not zero
logic Guard, Round, LSBNormSum; // bits needed to determine rounding
logic UfGuard, UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
logic [12:0] MaxExp; // maximum value of the exponent
logic [12:0] FracLen; // length of the fraction
logic SigNaN; // is an input a signaling NaN
logic UnderflowFlag; // Underflow singal used in FMAFlgM (used to avoid a circular depencency)
logic [63:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
///////////////////////////////////////////////////////////////////////////////
// Select input fields
// The following logic duplicates fma1 because it's cheaper to recompute than provide registers
///////////////////////////////////////////////////////////////////////////////
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlM[2] ? 64'b0 : Z;
// split inputs into the sign bit, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
assign XSgn = X[63];
assign YSgn = Y[63];
assign ZSgn = Addend[63]^FOpCtrlM[0]; //Negate Z if subtraction
assign ZExp = FmtM ? Addend[62:52] : {3'b0, Addend[62:55]};
// Calculate the product's sign
// Negate product's sign if FNMADD or FNMSUB
assign PSgn = XSgn ^ YSgn ^ FOpCtrlM[1];
///////////////////////////////////////////////////////////////////////////////
// Addition
///////////////////////////////////////////////////////////////////////////////
// Negate Z when doing one of the following opperations:
// -prod + Z
// prod - Z
assign InvZ = ZSgn ^ PSgn;
// Choose an inverted or non-inverted addend - the one is added later
assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdMan2 = KillProdM ? 106'b0 : ProdManM;
// Do the addition
// - add one to negate if the added was inverted
// - the 2 extra bits at the begining and end are needed for rounding
assign PreSum = AlignedAddend2 + {55'b0, ProdMan2, 2'b0} + {162'b0, InvZ};
// Is the sum negitive
assign NegSum = PreSum[162];
// If the sum is negitive, negate the sum.
assign Sum = NegSum ? -PreSum[161:0] : PreSum[161:0];
///////////////////////////////////////////////////////////////////////////////
// Leading one detector
///////////////////////////////////////////////////////////////////////////////
//*** replace with non-behavoral code
logic [8:0] i;
always_comb begin
i = 0;
while (~Sum[161-i] && $unsigned(i) <= $unsigned(9'd161)) i = i+1; // search for leading one
NormCnt = i+1; // compute shift count
end
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
// Determine if the sum is zero
assign SumZero = ~(|Sum);
// determine the length of the fraction based on precision
assign FracLen = FmtM ? 13'd52 : 13'd23;
// Determine if the result is denormal
assign SumExpTmp = KillProdM ? {2'b0, ZExp} : ProdExpM + -({4'b0, NormCnt} - 13'd56);
assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
// Determine the shift needed for denormal results
assign SumExpTmpMinus1 = SumExpTmp-1;
assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 9'b0;
// Normalize the sum
assign SumShifted = SumZero ? 162'b0 : Sum << NormCnt+DenormShift;
assign NormSum = SumShifted[161:107];
// Calculate the sticky bit
assign NormSumSticky = FmtM ? (|SumShifted[107:0]) : (|SumShifted[136:0]);
assign Sticky = AddendStickyM | NormSumSticky;
// Determine sum's exponent
assign SumExp = SumZero ? 13'b0 :
ResultDenorm ? 13'b0 :
SumExpTmp;
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
// round to nearest even
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// round to -infinity
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// round to infinity
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[2] : NormSum[31];
assign Round = FmtM ? NormSum[1] : NormSum[30];
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
assign UfRound = FmtM ? NormSum[0] : NormSum[29];
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
// Deterimine if a small number was supposed to be subtrated
assign SubBySmallNum = AddendStickyM&InvZ&~(NormSumSticky)&~ZZeroM;
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | ((Sticky|UfGuard)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfGuard)&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky|UfGuard)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfGuard)&~SubBySmallNum)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmM)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&UfLSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&~SubBySmallNum)));//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
end
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard | UfRound);
assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round);
// Compute rounded result
logic [64:0] RoundAdd;
logic [51:0] NormSumTruncated;
assign RoundAdd = FmtM ? Minus1 ? {65{1'b1}} : {64'b0, Plus1} :
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
assign NormSumTruncated = FmtM ? NormSum[54:3] : {NormSum[54:32], 29'b0};
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
assign ResultExp = FullResultExp[10:0];
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
// Determine the sign if the sum is zero
// if cancelation then 0 unless round to -infinity
// otherwise psign
assign ZeroSgn = (PSgn^ZSgn)&~Underflow ? FrmM == 3'b010 : PSgn;
// is the result negitive
// if p - z is the Sum negitive
// if -p + z is the Sum positive
// if -p - z then the Sum is negitive
assign ResultSgnTmp = InvZ&(ZSgn)&NegSum | InvZ&PSgn&~NegSum | ((ZSgn)&PSgn);
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// Set Invalid flag for following cases:
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
assign MaxExp = FmtM ? 13'd2047 : 13'd255;
assign SigNaN = FmtM ? (XNaNM&~X[51]) | (YNaNM&~Y[51]) | (ZNaNM&~Addend[51]) :
(XNaNM&~X[54]) | (YNaNM&~Y[54]) | (ZNaNM&~Addend[54]);
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgn) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
assign Overflow = FullResultExp >= MaxExp & ~FullResultExp[12]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = (SumExp[12] | ((SumExp == 0) & (Round|Guard|Sticky|UfGuard)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign UnderflowFlag = (FullResultExp[12] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|UfGuard|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Combine flags
// - FMA can't set the Divide by zero flag
// - Don't set the underflow flag if the result was rounded up to a normal number
assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
assign XNaNResult = FmtM ? {XSgn, X[62:52], 1'b1,X[50:0]} : {XSgn, X[62:55], 1'b1,X[53:0]};
assign YNaNResult = FmtM ? {YSgn, Y[62:52], 1'b1,Y[50:0]} : {YSgn, Y[62:55], 1'b1,Y[53:0]};
assign ZNaNResult = FmtM ? {ZSgn, Addend[62:52], 1'b1,Addend[50:0]} : {ZSgn, Addend[62:55], 1'b1,Addend[53:0]};
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 11'h7fe, {52{1'b1}}} :
{ResultSgn, 11'h7ff, 52'b0} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 8'hfe, {23{1'b1}}, 32'b0} :
{ResultSgn, 8'hff, 55'b0};
assign InvalidResult = FmtM ? {ResultSgn, 11'h7ff, 1'b1, 51'b0} : {ResultSgn, 8'hff, 1'b1, 54'b0};
assign KillProdResult = FmtM ?{ResultSgn, Addend[62:0] - {62'b0, (Minus1&AddendStickyM)}} + {62'b0, (Plus1&AddendStickyM)} : {ResultSgn, Addend[62:32] - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}, 32'b0};
assign UnderflowResult = FmtM ? {ResultSgn, 63'b0} + {63'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))} : {{ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}, 32'b0};
assign FMAResM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult : // has to be before inf
XInfM ? {PSgn, X[62:0]} :
YInfM ? {PSgn, Y[62:0]} :
ZInfM ? {ZSgn, Addend[62:0]} :
Overflow ? OverflowResult :
KillProdM ? KillProdResult : // has to be after Underflow
Underflow & ~ResultDenorm ? UnderflowResult :
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
{ResultSgn, ResultExp[7:0], ResultFrac, 3'b0};
endmodule